Should I consider acute acalculous cholecystitis in my elderly ambulatory patient admitted with right upper quadrant pain?

Short answer: Yes! Although we usually associate acute acalculous cholecystitis (AAC) with critically ill patients (eg, with sepsis, trauma, shock, major burns) in ICUs, AAC is not as rare as we might think in ambulatory patients. In fact, a 7 year study of AAC involving multiple centers reported that AAC among outpatients was increasing in prevalence and accounted for 77% of all cases (1)!

Although the pathophysiology of ACC is not fully understood, bile stasis and ischemia of the gallbladder either due to microvascular or macrovascular pathology have been implicated as potential causes (2). One study found that 72% of outpatients who developed ACC had atherosclerotic disease associated with hypertension, coronary, peripheral or cerebral vascular disease, diabetes or congestive heart failure (1). Interestingly, in contrast to calculous cholecystitis, “multiple arterial occlusions” have been observed on pathological examination of the gallbladder in at least some patients with ACC and accordingly a name change to “acute ischemic cholecystitis” has been proposed (3).

AAC can also complicate acute mesenteric ischemia and may herald critical ischemia and mesenteric infarction (3). The fact that cystic artery is a terminal branch artery probably doesn’t help and leaves the gallbladder more vulnerable to ischemia when arterial blood flow is compromised irrespective of the cause (4).

Of course, besides vascular ischemia there are numerous other causes of ACC, including infectious (eg, viral hepatitis, cytomegalovirus, Epstein-Barr virus, Salmonella, brucellosis, malaria, Rickettsia and enteroviruses), as well as many non-infectious causes such as vasculitides and, more recently, check-point inhibitor toxicity (1,5-8).

Bonus Pearl: Did you know that in contrast to cholecystitis associated with gallstones (where females and 4th and 5th decade age groups predominate), ACC in ambulatory patients is generally more common among males and older age groups (mean age 65 y) (1)?


If you liked this post, download the app and sign up under MENU to catch future pearls straight into your inbox, all for free! 


1. Savoca PE, Longo WE, Zucker KA, et al. The increasing prevalence of acalculous cholecystitis in outpatients: Result of a 7-year study. Ann Surg 1990;211: 433-37.
2. Huffman JL, Schenker S. Acute acalculous cholecystitis: A review. Clin Gastroenterol Hepatol 2010;8:15-22.
3. Hakala T, Nuutinene PJO, Ruokonen ET, et al. Microangiopathy in acute acalculous cholecystitis Br J Surg 1997;84:1249-52.
4. Melo R, Pedro LM, Silvestre L, et al. Acute acalculous cholecystitis as a rare manifestation of chronic mesenteric ischemia. A case report. Int J Surg Case Rep 2016;25:207-11.
5. Aguilera-Alonso D, Median EVL, Del Rosal T, et al. Acalculous cholecystitis in a pediatric patient with Plasmodium falciparum infection: A case report and literature review. Ped Infect Dis J 2018;37: e43-e45.  
6. Kaya S, Eskazan AE, Ay N, et al. Acute acalculous cholecystitis due to viral hepatitis A. Case Rep Infect Dis 2013;Article ID 407182.
7. Simoes AS, Marinhas A, Coelho P, et al. Acalculous acute cholecystitis during the course of an enteroviral infection. BMJ Case Rep 2013;12.
8. Abu-Sbeih H, Tran CN, Ge PS, et al. Case series of cancer patients who developed cholecystitis related to immune checkpoint inhibitor treatment. J ImmunoTherapy of Cancer 2019;7:118.



Should I consider acute acalculous cholecystitis in my elderly ambulatory patient admitted with right upper quadrant pain?

Do most patients with mycotic aneurysms have endocarditis?

No! In fact, the great majority of patients who develop mycotic aneurysm (MAs) in the postantibiotic era have no evidence of endocarditis1-3.

MAs are thought to be related to microbial arteritis due to blood stream infection of any source with implantation of circulating pathogen (usually bacterial) in atherosclerotic, diseased, or traumatized aortic intima. Plus, MAs may develop due to an adjacent infectious process (eg, vertebral osteomyelitis), either through direct extension or via lymphatic vessels, pathogen seeding of vasa vasorum, or infection of a pre-existing aneurysm1,2.  All these factors may occur in the absence of endocarditis.

Many of your patients may be at risk of MA such as those with advanced age or history of diagnostic or therapeutic arterial catheterization, illicit intravascular drug use, hemodialysis and depressed host immunity1-3..  Staphylococcus aureus, Salmonella sp, S. epidermidis and Streptococcus sp are common culprits in descending order1-3.

So think of MA in your patient with recent blood stream infection,  particularly due to S. aureus or Salmonella sp, in the setting of persistent signs of infection  with or without evidence of endocarditis.

Final Fun Fact: Did you know that the term “mycotic aneurysm” is a misnomer, having been first introduced by Sir William Osler to describe aneurysms of the aortic arch in a patient with (you guessed it) bacterial not fungal endocarditis?


  1. Gomes MN, Choyke PL, Wallace RB. Infected aortic aneurysms: A changing entity. Ann Surg 1992;215:435-42.
  2. Muller BT, Wegener OR, Grabitz K, et al. Mycotic aneurysms of the thoracic and abdominal aorta and iliac arteries: Experience with anatomic and extra-anatomic repair in 33 cases. J Vasc Surg 2001;33:106-13.
  3. Mukherjee JT, Nautiyal A, Labib SB. Mycotic aneurysms of the ascending aorta. Tex Heart Inst J 2012;39:692-5.
Do most patients with mycotic aneurysms have endocarditis?