My patient with no known liver disease appears to have bilateral asterixis. What other causes should I consider?

Although originally described in 1949 in patients with liver disease and labelled as “liver flap”, numerous other causes of asterixis exist aside from severe liver disease (1,2). As early as 1950s, asterixis was observed among some patients with heart failure and pulmonary insufficiency but without known significant liver disease (3). Azotemia has also been associated with asterixis.

Don’t forget about medication-associated asterixis . Commonly used drugs such as gabapentin, pregabalin, phenytoin, and metoclopramide have been associated with asterixis (1,4) . Even antibiotics such as ceftazidime and high dose trimethoprim-sulfamethoxazole may be culprits (1,5). There are many psychiatric drugs including lithium, carbamazepine, clozapine, and valproic acid that have been implicated (1,6) as well. Some reviews have also included hypomagnesemia and hypokalemia on the list of causes of asterixis (1).

Although asterixis is essentially a negative myoclonus with episodic loss of electrical activity of muscle and its tone, its exact pathophysiology remains unclear (7). 


Bonus Pearl: Did you know that the origin of the word asterixis is An (negative)-iso (equal)-sterixis (solidity) which was shortened by Foley and Adams, its original discoverers, to what we now refer to as “asterixis” (1).


1. Agarwal R, Baid R. Asterixis. J Postgrad Med 1016;62:115-7. 2. Pal G, Lin MM, Laureno R. Asterixis: a study of 103 patients. Metab Brain Dis; 2014:29:813-24.
3. Conn HO. Aterixis—Its occurrence in chronic pulmonary disease, with a commentary on its general mechanism. N Engl J Med 1958;259:564-569.
4. Kim JB, Jung JM, Park MH. Negative myoclonus induced by gabapentin and pregabalin: a case series and systemic literature review. J Neurol Sci 2017;382:36-9.
5. Gray DA, Foo D. Reversible myoclonus, asterixis, and tremor associated with high dose trimethoprim-sulfamethoxazole: a case report. J Spinal Cord Med 2016; Vol. 39 (1), pp. 115-7.
6. Nayak R, Pandurangi A, Bhogale G, et al. Aterixis (flapping tremors) as an outcome of complex psychotropic drug interaction. J Neuropsychiatry Clin Neurosci 2012;24: E26-7. Ugawa Y, Shimpo T, Mannen T. Physiological analysis of asterixis: silent period locked averaging. J Neurol Neurosurg Psych 1989;52:89-9.


If you liked this pearl, sign up under MENU and receive future pearls straight into your mailbox!


My patient with no known liver disease appears to have bilateral asterixis. What other causes should I consider?

Should I continue nadolol in my patient with cirrhosis and refractory ascites?

Under certain circumstances, you may need to! Although nonselective beta blockers (NSBBs), such as nadolol and propranolol, have been the cornerstone of medical treatment of portal hypertension in preventing variceal bleeding in patients with cirrhosis for decades, recent reports of their association with worsening survival, increased risk of hepatorenal syndrome and acute kidney injury in patients with refractory ascites or spontaneous bacterial peritonitis [SBP]) 1,2 have added controversy to their routine use in end-stage cirrhosis.

This is because patients with end-stage cirrhosis may be highly dependent on their cardiac output (particularly the heart rate) in maintaining an adequate arterial blood pressure 3-5 and the negative inotropic and chronotropic effects of NSBBs blunt this compensatory mechanism. The result is a drop in the cardiac output that may be particularly significant in the presence of conditions already associated with hypotension, such as sepsis, spontaneous bacterial peritonitis (SBP), or hemorrhage, further increasing the risk of renal hypoperfusion and hepatorenal syndrome.3

Although 2 meta-analysis studies failed to find an association between NSBBs and increased mortality among patients with cirrhosis and ascites, 6,7 serious concerns over the adverse effects of these drugs in at least a subset of patients has not waned.  Some have recommended reducing NSBB dose or discontinuing treatment in patients with refractory ascites or SBP and any of the following parameters: 4

  • Systolic blood pressure <90 mmHg
  • Serum creatinine >1.5 mg/dL
  • Hyponatremia <130 mmol/L

Similar recommendations were made by a 2015 consensus conference on individualizing the care of patients with portal hypertension.

In the absence of randomized-controlled studies, it seems prudent to proceed with more caution when using NSBBs in patients with end-stage cirrhosis and watch closely for any signs of hypotension or renal function deterioration.


  1. Serste T, Njimi H, Degre D, et al. The use of beta-lackers is associated with the occurrence of acute kidney injury in severe hepatitis. Liver In 2015;35:1974-82.
  2. Mandorfer M, Bota S, Schwabl P, et al. Nonselective beta blockers increase risk of hepatorenal syndrome and death in patients with cirrhosis and spontaneous bacterial peritonitis. Gastroenterol 2014;146:1680-90.
  3. Garcia-Tsao G. The use of nonselective beta blockers for treatment of portal hypertension. Gastroenterol Hepatol 2017;13: 617-19.
  4. Reiberger T, Mandorfer M. Beta adrenergic blockade and decompensated cirrhosis. J Hepatol 2017;66: 849-59.
  5. Giannelli V, Lattanzi, Thalheimer U, et al. Beta-blockers in liver cirrhosis. Ann Gastroenterol 2014;27:20-26.
  6. Facciorusso A, Roy S, Livadas S, et al. Nonselective beta-blockers do not affect survival in cirrhotic patients with ascites. Digest Dis Sci 2018;63:1737-46.
  7. Njei B, McCarty TR, Garcia-Tsao G. Beta-blockers in patients with cirrhosis and ascites: type of betablocker matters. Gut 206;65:1393-4.
  8. De Franchis R. Expanding consensus in portal hypertension. Report of the Baveno VI Consensus Workshop: stratifying risk and individualizing care for portal hypertension.  J Hepatol 2015;63:743-52.  

If you like this post, sign up under MENU and get future pearls straight into your mailbox! 

Should I continue nadolol in my patient with cirrhosis and refractory ascites?

My patient with cirrhosis now has an upper gastrointestinal bleed (UGIB) with hepatic encephalopathy (HE). What’s the connection between UGIB and HE?

Hepatic encephalopathy (HE) may be precipitated by a variety of factors including infection, hypovolemia, electrolyte imbalance (eg, hyponatremia, hypokalemia), metabolic alkalosis, sedatives, and of course UGIB. 1-3

Ammonia is often considered to play a central role in the the pathogenesis of HE, particularly when associated with UGIB. The ammoniagenic potential of UGIB is primarily attributed to the presence of hemoglobin protein in the intestinal tract. One-half of the ammoniagenesis originates from amino acid metabolism (mainly glutamine) in the mucosa of the small bowel, while the other half is due to the splitting of urea by the resident bacteria in the colon (eg, Proteus spp., Enterobacteriaceae, and anerobes).1,2

A large protein load in the GI tract, as occurs in UGIB, may result in hyperammonemia in patients with cirrhosis due to the limited capacity of the liver to convert ammonia to urea through the urea cycle as well as by the shunting of blood around hepatic sinusoids. Recent studies, however, also implicate the kidneys as an important source of ammonia in this setting, further compounding HE.3

It’s important to stress that ammonia is not likely to be the only mediator of HE. Enhanced production of cytokines due to infection or other inflammatory states, neurosteroids, endogenous benzodiazepines, and other bacterial byproducts may also play an important role in precipitating HE.2,4-6  So stay tuned!

Bonus pearl: Did you know that proinflammatory cytokines tumor necrosis factor-alpha and inerleukin-6 increase ammonia permeability across central nervous system-derived endothelial cells? 7



  1. Olde Damink SWM, Jalan R, Deutz NEP, et al. The kidney plays a major role in the hyperammonemia seen after simulated or actual GI bleeding in patients with cirrhosis. Hepatology 2003;37:1277-85.
  2. Frederick RT. Current concepts in the pathophysiology and management of hepatic encephalopathy. Gastroenterol Hepatol 2011;7:222-233.
  3. Tapper EB, Jiang ZG, Patwardhan VR. Refining the ammonia hypothesis: a physiology-driven approach to the treatment of hepatic encephalopathy. Mayo Clin Proc 2015;90:646-58.
  4. Shawcross DL, Davies NA, Williams R, et al. Systemic inflammatory response exacerbates the neuropsychological effects of induced hyperammonemia in cirrhosis. J Hepatol 2004;40:247-254.
  5. Shawcross DL, Sharifi Y, Canavan JB, et al. Infection and systemic inflammation, not ammonia, are associated with grade ¾ hepatic encephalopathy, but not mortality in controls. J Hepatol 2011;54:640-49.
  6. Shawcross D, Jalan R. The pathophysiologic basis of hepatic encephalopathy: central role for ammonia and inflammation.Cell Mol Life Sci 2005;62:2295-2304.
  7. Duchini A, Govindarajan S, Santucci M, et al. Effects of tumor necrosis factor-alpha and interleukin-6 on fluid-phase permeability and ammonia diffusion in CNS-derived endothelial cells. J Investig Med 1996;44:474-82.

If you liked this pearl, sign up under menu and receive future pearls straight into your mailbox!

My patient with cirrhosis now has an upper gastrointestinal bleed (UGIB) with hepatic encephalopathy (HE). What’s the connection between UGIB and HE?

Should I avoid intravenous furosemide for management of ascites in my patient with cirrhosis?

Generally, yes! IV furosemide for treatment of ascites in patients with cirrhosis should be avoided for couple of reasons.

First, in contrast to patients with congestive heart failure in whom the absorption of oral furosemide may be impaired due to bowel wall edema, patients with cirrhosis and ascites appear to absorb oral furosemide efficiently, similarly to that of control patients.1   Another reason for avoiding IV furosemide in this setting is the possibility of a significant drop in the GFR with its attendant rise in BUN and serum creatinine, clinically resembling a picture of hepatorenal syndrome.2

Although the mechanism of the adverse effect of IV furosemide on the renal function of patients with cirrhosis is not totally clear, furosemide-induced vasoconstriction, not intrasvascular volume depletion due to sodium wasting, seems to play an important role.3

Nevertheless, certain situations may necessitate the use of IV furosemide in patients with cirrhosis and ascites, such as in single doses to help identify patients who will be responsive to diuretics, and in patients in need of prompt diuresis such as those with concurrent pulmonary edema. In a somewhat reassuring study, a single dose of 80 mg IV furosemide reliably identified cirrhotic patients with ascites responsive to diuretics, without a significant risk of deteriorating renal function.3



  1. Sawhney VK, Gregory PB, Swezey SE, et al. Furosemide disposition in cirrhotic patients. Gastroenterology 1981; 81: 1012-16.
  2. Daskalopoulos G, Laffi G, Morgan T, et al. Immediate effects of furosemide on renal hemodynamics in chronic liver disease with ascites. Gastroenterology 1987;92:1859-1863.
  3. Spahr, L., Villeneuve, J., Tran, H. K., & Pomier-Layrargues, G. Furosemide-induced natriuresis as a test to identify cirrhotic patients with refractory ascites. Hepatology 2001;33:28-31.


Contributed by Sam Miller, MD, Mass General Hospital, Boston, MA.


Should I avoid intravenous furosemide for management of ascites in my patient with cirrhosis?

My patient with cirrhosis has a large right sided pleural effusion with only a small amount of ascites. Could this effusion still be related to his cirrhosis?

Yes! Although we often associate pleural effusions in patients with cirrhosis with the presence of large ascites, some patients present with hepatic hydrothorax even in the absence of significant ascites.1-3  

In fact, in a study involving 77 patients with hepatic hydrothorax, 49% had minimal or small and 9% had no detectable ascites!1  Interestingly, nearly three-quarters of patients in this study had right sided pleural effusion with 10% having bilateral and 17% having left sided effusion only. Hepatic hydrothorax without ascites as the first sign of liver cirrhosis has also been reported.2

Although the mechanism(s) behind hepatic hydrothorax is not fully clear, the passage of peritoneal fluid into the pleural cavity through defects in the tendinous portion of the diaphragm assisted by negative intrathoracic pressure during inspiration is commonly favored. 1-3  

Supportive evidence includes a number of studies involving intraperitoneal injection of air, dyes or technetium 99 m-sulfur colloid that have demonstrated the trans-diaphragmatic flow of ascites into the pleural cavity. 1-4  In the absence of ascites, a complete equilibrium between the amount of ascites produced and its flow into and reabsorption by the pleural cavity is assumed.1,2

Bonus Pearl: Did you know that although most patients with hepatic hydrothorax have a transudative pleural effusion according to Light’s criteria, 1 study showed that 18% of patients may meet the Light’s criteria for an exudative effusion? 5,6


  1. Badillo R, Rockey DC. Hepatic hydrothorax: Clinical features, management, and outcomes in 77 patients and review of the literature. Medicine 2014;93:135-142.
  2. Kim JS, Kim CW, Nam HS, et al. Hepatic hydrothorax without ascites as the first sign of liver cirrhosis. Respirology Case Reports 2016;4:16-18.
  3. Rubinstein D, McInnes IE, Dudley FJ. Hepatic hydrothorax in the absence of clinical ascites: diagnosis and management. Gastroenterology 1985;88:188-91.
  4. Holt KA, Oliviera E, Rohatgi PK. Hepatic hydrothorax demonstration by Tc-99 sulfur colloid ascites scan. Clin Nucl Med 1999;24:609. 
  5. Light RW. New treatment for hepatic hydrothorax? Ann Am Thorac Soc 2016;13:773-74.
  6. Bielsa S, Porcel JM, Castellote J, et al. Solving the Light’s criteria misclassification rate of cardiac and hepatic transudates. Respirology 2012;17”721-726.
My patient with cirrhosis has a large right sided pleural effusion with only a small amount of ascites. Could this effusion still be related to his cirrhosis?

My patient with cirrhosis has hypohonia and cogwheel rigidity. Is there a connection between cirrhosis and Parkinson’s disease?

There is a high prevalence of extra-pyramidal or Parkinson-like (PL) clinical findings in patients with cirrhosis. In fact, over 75% of patients with cirrhosis may exhibit PL signs, such as tremor, rigidity, and akinesia, with 88% also showing hyperintensity in the globus pallidus of basal ganglia on T1-weighted brain MRI.1

What’s even more interesting is the similarity between PL clinical and MRI findings among patients with cirrhosis and those with Manganese (Mn) toxicity.2,3 More specifically, similar MRI findings involving the globus pallidus have been reported in Mn-exposed workers, patients with cirrhosis, and those undergoing total parenteral nutrition with excessive Mn replacement. 4 These observations seem more than coincidental as 67% of patients with cirrhosis have been reported to have elevated blood Mn concentrations, with significantly higher levels in patients with previous portacaval anastomoses or transjugular intrahepatic portosystemic shunt (TIPS).1

Mn-induced parkinsonism is distinguishable from classic Parkinson’s disease in several ways, including the absence of Lewy bodies, more frequent dystonia, and less resting tremor.5 Also, remember that Mn-induced PL disease does NOT respond to L-dopa, a drug used to treat early stages of PD. 5 This finding can be explained by the fact that, in contrast to Parkinson’s disease where many of the dopamine-producing cells in the substantia nigra of the brain degenerate resulting in dopamine deficiency, in Mn-induced PL disease the problem is release of dopamine into synapses not its production.5

Bonus Pearl: Did you know that due to its paramagnetic properties, manganese can be effectively seen by MRI!


  1. Spahr L, Butterworth RF, Fontaine S, et al. Increased blood manganese in cirrhotic patients: relationship to pallidal m agnetic resonance signal hyperintensity and neurological symptoms. Hepatology 1996;24:1116-1120.
  2. Hauser RA, Zesiewicz TA, Rosemurgy AS, et al. Manganese intoxication and chronic liver failure. Ann Neurol 1994;36:871-75.
  3. Krieger S, Jaub M, Jansen O, et al. Neuropsychiatric profile and hyperintense globus pallidus on T1-weighted magnetic resonance images in liver cirrhosis. Gastroenterol 1996;111:147-55.
  4. Lucchini R, Albini E, Placidi D, et al. Brain magnetic resonance imaging and manganese exposure. Neurotoxicity 2000;21:769-75.
  5. Kwakye GF, Paoliello MMB, Mukhopadhyay S, et al. Manganese-induced parkinsonism and Parkinson’s disease: Shared and distinguishable features. Int J Environ Res Public Health 2015;12;7519-40.

Don’t forget to sign up under menu to get future pearls right into your mailbox!

My patient with cirrhosis has hypohonia and cogwheel rigidity. Is there a connection between cirrhosis and Parkinson’s disease?

Should my patient with suspected alcoholic hepatitis undergo liver biopsy?

Although a characteristic clinical history and biochemical pattern of liver injury can strongly suggest the diagnosis of alcoholic hepatitis (AH), a definitive diagnosis is confirmed with liver biopsy only. In fact, in 30% of patients clinically diagnosed as having AH, a liver biopsy may lead to an alternative diagnosis.1Understandably, many physicians are reluctant to proceed with biopsy in this fragile patient population given the associated risks, notably bleeding. For this reason, most patients with AH are clinically diagnosed without a liver biopsy. However, there are certain instances in which a biopsy can be helpful, including when:2

  • Diagnosis of AH is in doubt
  • Suspicion for another disease process that may be contributing in parallel to AH is high
  • Obtaining prognostic data or identification of advanced hepatic fibrosis or cirrhosis in AH is desired

Thus, liver biopsy findings may influence short- and long-term management in AH. For these reasons, the European Association for the Study of the Liver recommends consideration of a liver biopsy in patients with AH.3 To minimize the bleeding risk, the transjugular approach is preferred.


  1. Mookerjee RP, Lackner C, Stauber R, et al. The role of liver biopsy in the diagnosis and prognosis of patients with acute deterioration of alcoholic cirrhosis. J Hepatol 2011; 55:1103-1111 Link
  2. Altamirano J, Miquel R, Katoonizadeh A, et al. A histologic scoring system for prognosis of patients with alcoholic hepatitis. Gastroenterology 2014;146: 1231-1239. PDF
  3. European Association for the Study of Liver. EASL clinical practical guidelines: management of alcoholic liver disease. J Hepatol 2012; 57:399-420. PDF

Contributed by Jay Luther, MD, Gastrointestinal Unit, Mass General Hospital, Boston, MA.

Should my patient with suspected alcoholic hepatitis undergo liver biopsy?

What is the significance of Terry’s or Lindsay’s nails in my hospitalized patient?

Terry’s nails were first described in 1954 in patients with hepatic cirrhosis (prevalence 82%, majority related to alcohol abuse) (1). Since then, they have been reported in a variety of other conditions, including adult-onset diabetes mellitus (AODM), chronic congestive heart failure, chronic renal failure, pulmonary tuberculosis, and Reiter’s syndrome (2).

A 1984 study found Terry’s nails in 25% of hospitalized patients (3).  In this study, cirrhosis, chronic congestive heart failure, and AODM were significantly associated with Terry’s nails, while pulmonary tuberculosis, rheumatoid arthritis and cancer were not. The presence of Terry’s nails may be particularly concerning in patients 50 y of age or younger as it increases the relative risk of cirrhosis, chronic congestive heart failure or AODM by 5-fold (18-fold for cirrhosis alone) in this age group (3).

Terry’s nails should be distinguished from Lindsay’s nails or “half and half” nails. Although both nail abnormalities are characterized by an opaque white proximal portion, Terry’s nails have a thinner distal pink to brown transverse band no more than 3 mm wide (3) (Fig 1), while the same anomaly is wider and occupies 20%-60% of the nail bed in Lindsay’s nails (Fig 2). Of interest, Lindsay’s nails have been reported in up to 40% of patients with chronic kidney disease (4,5).


1. Terry R. White nails in hepatic cirrhosis. Lancet 1954;266:757-59. 
2. Nia AM, Ederer S, Dahlem K, et al. Terry’s nails: a window to systemic diseases. Am J Med 2011;124:603-604. 
3. Holzberg M, Walker HK. Terry’s nails: revised definitions and new correlations. Lancet 1984;1(8382):896-99. 
4. Pitukweerakul S, Pilla S. Terry’s nails and Lindsay’s nails: Two nail abnormalities in chronic systemic diseases. J Gen Intern Med 31;970. 
5. Gagnon AL, Desai T. Dermatological diseases in patients with chronic kidney disease 2013;2:104-109.

Figure 1. Terry’s nails in a patient with end-stage liver disease

Figure 2. Lindsay’s nails in a patient with chronic kidney disease

If you liked this post, SELRES_9060f380-b0ce-41bb-b812-fe2595cb3460SELRES_4b9ffe76-4732-435c-a61e-cb3aba28fef9SELRES_055e8f9c-d15f-4b5c-8ddc-c9eb04539366sign upSELRES_055e8f9c-d15f-4b5c-8ddc-c9eb04539366SELRES_4b9ffe76-4732-435c-a61e-cb3aba28fef9SELRES_9060f380-b0ce-41bb-b812-fe2595cb3460 on the P4P home page and receive future pearls delivered directly into your mailbox!

What is the significance of Terry’s or Lindsay’s nails in my hospitalized patient?

Should I be concerned about the umbilical hernia in my patient with cirrhosis and ascites?

Although umbilical hernia in patients with cirrhosis and ascites is common and often “expected” (a rate of 20% during the course of their disease), it can be associated with significant risk of complications such as incarceration, ascites drainage, peritonitis, and spontaneous rupture or evisceration from necrosis of overlying skin.1,2

A 2007 retrospective study involving patients with cirrhosis and umbilical hernia reported a complication rate of 77% and related mortality of 15% among those managed conservatively (mean period of observation ~ 5 years); MELD score could not predict failure of conservative management (median 22 in complicated vs 24 in uncomplicated).3

Because the risk of death with hernia repair in urgent settings is 7x higher than for elective hernia repair in cirrhotic patients, there has been increasing interest in elective repair in patients with well-compensated cirrhosis.3 Interestingly, the reported surgical complication rates among patients with well-compensated cirrhosis appear similar to those in noncirrhotic patients.3 If the patient is expected to undergo liver transplantation in the near future, elective hernia repair can be postponed and managed concomitantly.

Bonus pearl: Did you know that spontaneous umbilical hernia rupture is also known as “Flood syndrome” (should be easy to remember!), first described by Frank B Flood, a surgical resident back in 1961? 4


  1. Marsman HA, Heisterkamp J, Halm JA, et al. Management in patients with liver cirrhosis and an umbilical hernia. Surgery 2007;142:372-5.
  2. Coelho, JCU, Claus CMP, Campos ACL, et al. Umbilical hernia in patients with liver cirrhosis: a surgical challenge. World J Gastrointest Surg 2016;8:476-82.
  3. Martens P, Laleman W. Umbilical hernia in a patient with cirrhosis. Cleveland Clin J Med 2015;82: 404-5.
  4. Nguyen ET, Tudtud-Hans LA. Flood syndrome: spontaneous umbilical hernia rupture leaking ascitic fluid-a case report. Perm J 2017;21:16-152. 

If you liked this pearl, subscribe to P4P and have future pearls delivered right into your mailbox!

Should I be concerned about the umbilical hernia in my patient with cirrhosis and ascites?

Why isn’t my patient with congestive heart failure or end-stage liver disease losing weight despite being on diuretic therapy? Is the diuretic dose too low, or is the salt intake too high?

When a patient with congestive heart failure (CHF) or end-stage liver disease (ESLD) doesn’t respond as expected to diuretic therapy, measurement of urinary sodium (Na) can be helpful.

In low effective arterial blood volume states (eg, CHF and ESLD) aldosterone secretion is high, resulting in high urine potassium (K) and low urine Na concentrations. However, in the presence of diuretics, urinary Na excretion should rise.

Patients undergoing active diuresis are often restricted to a 2 g (88 mEq) Na intake/day, with ~10 mEq excreted via non-urinary sources (primarily stool), and ~ 78 mEq excreted in the urine to “break even” — that is, to maintain the same weight.

Although historically measured 1, a 24-hour urine Na and K collection is tedious, making spot urine Na/K ratio more attractive as a potential proxy.  Approximately 90% of patients who achieve a urinary Na/K ratio ≥1 will have a urinary Na excretion ≥78 mEq/day — that is to say, they are sensitive to the diuretic and will have a stable or decreasing weight at the current dose. 2,3

Urine Na/K may be interpreted as follows:

  • ≥1 and losing weight suggests effective diuretic dose, adherent to low Na diet
  • ≥1 and rising weight suggests effective diuretic dose, non-adherent to low Na diet
  • <1 and rising weight suggests ineffective diuretic dose

The “ideal” Na/K ratio as relates to responsiveness to diuretics has ranged from 1.0 to 2.5.4 In acutely decompensated heart failure patients on spironolactone, a K-sparing diuretic, Na/K ratio >2 at day 3 of hospitalization may be associated with improved outcome at 180 days. 5

Remember also that if the patient’s clinical syndrome is not correlating well with the ratio, it’s always a good idea to proceed to a 24-hour urine collection.



  1. Runyon B. Refractory Ascites. Semin Liver Dis. Semin Liver Dis. 1993 Nov;13(4):343-51.
  2. Stiehm AJ, Mendler MH, Runyon BA. Detection of diuretic-resistance or diuretic-sensitivity by spot urine Na/K ratios in 729 specimens from cirrhotics with ascites: approximately 90 percent accuracy as compared to 24-hr urine Na excretion (abstract). Hepatology 2002; 36: 222A.
  3. da Silva OM, Thiele GB, Fayad L. et al. Comparative study of spot urine Na/K ratio and 24-hour urine sodium in natriuresis evaluation of cirrhotic patients with ascites. GE J Port Gastroenterol 2014;21:15-20
  4. El-Bokl M, Senousy, B, El-Karmouty K, Mohammed I, Mohammed S, Shabana S, Shelby H. Spot urinary sodium for assessing dietary sodium restriction in cirrhotic ascites. World J Gastroenterol 2009; 15:3631.
  5. Ferreira JP, Girerd N, Medeiros PB, et al. Spot urine sodium excretion as prognostic marker in acutely decompensated heart failure: the spironolactone effect. Clin Res Cardiol 2016;105:489-507.


Contributed by Alyssa Castillo, MD, with valuable input from Sawalla Guseh, MD, both from Mass General Hospital, Boston, MA.

Why isn’t my patient with congestive heart failure or end-stage liver disease losing weight despite being on diuretic therapy? Is the diuretic dose too low, or is the salt intake too high?