My hospitalized patient with pneumonia has now suffered an acute myocardial infarction (MI). Can acute infection and MI be related?

Yes! Ample epidemiological studies implicate infection as an important risk factor for MI.1 The increased risk of MI has been observed during the days, weeks, months or even years following an infection.

A 2018 paper reported a several-fold risk of MI during the week after laboratory-confirmed infection caused by a variety of respiratory pathogens such as influenza virus (6-fold), respiratory syncytial virus (4-fold), and other respiratory viruses (3-fold). 2 Among patients hospitalized for pneumococcal pneumonia, 7-8% may suffer an MI.3,4 One study found a 48-fold increase in the risk of MI during the first 15 days after hospitalization for acute bacterial pneumonia.5 Similarly, an increase in the short-term risk of MI has been observed in patients with urinary tract infection and bacteremia.6

The risk of MI appears to be the highest at the onset of infection and correlates with the severity of illness, with the risk being the highest in patients with pneumonia complicated by sepsis, followed by pneumonia and upper respiratory tract infection. Among patients with pneumonia, the risk exceeds the baseline risk for up to 10 years after the event, particularly with more severe infections.1

Potential mechanisms of MI following infections include release of inflammatory cytokines (eg, interleukins 1, 6, tumor necrosis factor alpha) causing activation of inflammatory cells in atherosclerotic plaques, in turn resulting in destabilization of the plaques. In addition, the thrombogenic state of acute infections, platelet and endothelial dysfunction may increase the risk of coronary thrombosis at sites of plaque disruption beyond clinical resolution of the acute infection. 1

Liked this post? Download the app on your smartphone and sign up under MENU to get future pearls straight into your inbox, all for free!

 

References

  1. Musher DM, Abers MS, Corrales-Medina VF. Acute infection and myocardial infarction. N Engl J Med 2019;380:171-6. https://www.ncbi.nlm.nih.gov/pubmed/30625066
  2. Kwong JC, Schwartz KL, Campitelli MA, et al. Acute myocardial infarction after laboratory-confirmed influenza infection. N Engl J Med 2018;378:345-53. https://www.nejm.org/doi/full/10.1056/NEJMoa1702090
  3. Musher DM, Alexandraki I, Graviss EA, et al. Bacteremic and nonbacteremic pneumococcal pneumonia: a prospective study. Medicine (Baltimore) 2000;79:210-21. https://www.ncbi.nlm.nih.gov/pubmed/10941350
  4. Musher DM, Rueda Am, Kaka As, Mapara SM. The association between pneumococcal pneumonia and acute cardiac events. Clin Infect Dis 2007;45:158-65. https://www.ncbi.nlm.nih.gov/pubmed/17578773
  5. Corrales-Medina VF, Serpa J, Rueda AM, et al. Acute bacterial pneumonia is associated with the occurrence of acute coronary syndromes. Medicine (Baltimore) 2009;88:154-9. https://www.ncbi.nlm.nih.gov/pubmed/19440118
  6. Dalager-Pedersen M, Sogaard M, Schonheyder HC, et al. Risk for myocardial infarction and stroke after community-acquired bacteremia: a 20-year population-based cohort study. Circulation 2014;129:1387-96. https://www.ncbi.nlm.nih.gov/pubmed/24523433

 

My hospitalized patient with pneumonia has now suffered an acute myocardial infarction (MI). Can acute infection and MI be related?

My patient with no known liver disease appears to have bilateral asterixis. What other causes should I consider?

Although originally described in 1949 in patients with liver disease and labelled as “liver flap”, numerous other causes of asterixis exist aside from severe liver disease (1,2). As early as 1950s, asterixis was observed among some patients with heart failure and pulmonary insufficiency but without known significant liver disease (3). Azotemia has also been associated with asterixis.

Don’t forget about medication-associated asterixis . Commonly used drugs such as gabapentin, pregabalin, phenytoin, and metoclopramide have been associated with asterixis (1,4) . Even antibiotics such as ceftazidime and high dose trimethoprim-sulfamethoxazole may be culprits (1,5). There are many psychiatric drugs including lithium, carbamazepine, clozapine, and valproic acid that have been implicated (1,6) as well. Some reviews have also included hypomagnesemia and hypokalemia on the list of causes of asterixis (1).

Although asterixis is essentially a negative myoclonus with episodic loss of electrical activity of muscle and its tone, its exact pathophysiology remains unclear (7). 

 

Bonus Pearl: Did you know that the origin of the word asterixis is An (negative)-iso (equal)-sterixis (solidity) which was shortened by Foley and Adams, its original discoverers, to what we now refer to as “asterixis” (1).

 

References
1. Agarwal R, Baid R. Asterixis. J Postgrad Med 2016;62:115-7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4944342/

2. Pal G, Lin MM, Laureno R. Asterixis: a study of 103 patients. Metab Brain Dis; 2014:29:813-24. https://link.springer.com/article/10.1007%2Fs11011-014-9514-7
3. Conn HO. Aterixis—Its occurrence in chronic pulmonary disease, with a commentary on its general mechanism. N Engl J Med 1958;259:564-569. https://www.nejm.org/doi/full/10.1056/NEJM195809182591203
4. Kim JB, Jung JM, Park MH. Negative myoclonus induced by gabapentin and pregabalin: a case series and systemic literature review. J Neurol Sci 2017;382:36-9. https://www.sciencedirect.com/science/article/pii/S096758681830225X
5. Gray DA, Foo D. Reversible myoclonus, asterixis, and tremor associated with high dose trimethoprim-sulfamethoxazole: a case report. J Spinal Cord Med 2016; Vol. 39 (1), pp. 115-7. https://www.ncbi.nlm.nih.gov/pubmed/26111222
6. Nayak R, Pandurangi A, Bhogale G, et al. Aterixis (flapping tremors) as an outcome of complex psychotropic drug interaction. J Neuropsychiatry Clin Neurosci 2012;24: E26-7. https://neuro.psychiatryonline.org/doi/pdf/10.1176/appi.neuropsych.101102667.

7.Ugawa Y, Shimpo T, Mannen T. Physiological analysis of asterixis: silent period locked averaging. J Neurol Neurosurg Psych 1989;52:89-9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1032663/pdf/jnnpsyc00523-0104.pdf

 

If you liked this pearl, sign up under MENU and receive future pearls straight into your mailbox!

 

My patient with no known liver disease appears to have bilateral asterixis. What other causes should I consider?

My patient with community-acquired pneumonia (CAP) will be going home on an oral antibiotic. Is there a significant difference in the risk of Clostridium difficile infection among the usual CAP antibiotics?

Not all antibiotics are equal in their risk of CDI. Among the common antibiotics used for respiratory tract infections, doxycycline appears to be the least likely to be associated with CDI. 

 

A population-based case-control study of community-acquired CDI found that while recent exposure increased the risk of CDI for fluoroquinolones, macrolides, cephalosporins, sulfonamides and trimethoprim and penicillins, the risk of CDI with tetracycline use was not increased (1).  Similar findings (with the exception of sulfonamides also appearing risk-neutral) have been reported by others (2). 

 

Among patients receiving ceftriaxone, receipt of doxycycline has been associated with protection against development of CDI (3).  A 2018 systematic review and meta-analysis also concluded that tetracyclines were associated with a decreased risk of CDI; OR 0.55 (95% CI 0,40-0.75) for doxycycline alone (4). 

 

The most likely explanation for why doxycycline may be associated with lower risk of CDI is its in vitro activity against anaerobes, including C. difficile. Additionally, because of its ability to inhibit protein synthesis, doxycycline may attenuate C. difficile toxin production. Its high bioavailability and maximal absorption from the upper gastrointestinal tract may also mitigate its impact on gut flora, further reducing its risk of CDI (3). 

 

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References
1. Delaney JAC, Dial S, Barkun A et al. Antimicrobial drugs and community-acquired Clostridium difficile-associated disease-UK. Emerg Infect Dis 2007:13;761-63. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2738472
2. Kuntz JL, Chirchilles EA, et al. Incidence of and risk factors for community-associated Clostridium difficile infection : A nested case-control study. BMC Infect Dis 2011;11:194. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154181/ 
3. Doernberg SB, Winston LG, Deck DH, et al. Does doxycycline protect against development of Clostridium difficile infection. Clin Infec Dis 2012;44:615-20. https://www.academia.edu/7814406/Does_Doxycycline_Protect_Against_Development_of_Clostridium_difficile_Infection
4. Tariq R, Cho J, Kapoor S, et al. Low risk of primary Clostridium difficile infection with tetracyclines: a systematic review and metanalysis. Clin Infect Dis 2018; 766:514-27. https://academic.oup.com/cid/article/66/4/514/4161552 

If you liked this post, sign up under MENU and get future pearls straight into your mailbox!

My patient with community-acquired pneumonia (CAP) will be going home on an oral antibiotic. Is there a significant difference in the risk of Clostridium difficile infection among the usual CAP antibiotics?

My patient with erythema multiforme has tested positive for Mycoplasma pneumoniae IgM antibody. Does this mean she has an acute M. pneumonia infection as the cause of her acute illness?

Not necessarily! Although detection of IgM in the serum of patients has proven valuable in diagnosing many infections during their early phase, particularly before IgG is detected, less well known is that false-positive IgM results are not uncommon. 1

More specific to M. pneumoniae IgM, false-positive results have been reported in 10-80% of patients without a clinical diagnosis of acute M. pneumoniae infection 2-4 and 3-15% of blood donors. 4

False-positive IgM results may also occur when testing for other infectious agents, such as the agent of Lyme disease (Borrelia burgdorferi), arboviruses (eg, Zika virus), and herpes simplex, Epstein-Barr, cytomegalovirus, hepatitis A and measles viruses. 1,5  

Reports of false positive IgM results include a patient with congestive heart failure and mildly elevated liver enzymes who had a false-positive hepatitis IgM which led to unnecessary public health investigation and exclusion from an adult day care center. 1 Another patient with sulfa rash had a false-positive measles IgM antibody resulting in callback of >100 patients and healthcare providers for testing!5

There are many potential mechanisms for false-positive IgM results, including polyclonal B cell activation, “vigorous immune response”, cross-reactive antibodies, autoimmune disease, subclinical reactivation of latent viruses, influenza vaccination, overreading weakly reactive results, and persistence of antibodies long after the resolution of the acute disease. 1,2

In our patient, a significant rise in M. pneumoniae IgG between acute and convalescent samples several weeks apart may be more helpful in diagnosing an acute infection accounting for her erythema multiforme.

 

References

  1. Landry ML. Immunoglobulin M for acute infection: true or false? Clin Vac Immunol 2016;23:540-5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933779/
  2. Csango PA, Pedersen JE, Hess RD. Comparison of four Mycoplasma pneumoniae IgM-, IgG- and IgA-specific enzyme immunoassays in blood donors and patients. Clin Micro Infect 2004;10:1089-1104. https://www.clinicalmicrobiologyandinfection.com/article/S1198-743X(14)63853-2/pdf
  3. Thacker WL, Talkington DF. Analysis of complement fixation and commercial enzyme immunoassays for detection of antibodies to Mycoplasma pneumoniae in human serum. Clin Diag Lab Immunol 2000;7:778-80. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC95955/
  4. Ryuta U, Juri O, Inoue Y, et al. Rapid detection of Mycoplasma pneumoniae IgM antibodies using immunoCard Mycoplasma kit compared with complement fixation (CF) tests and clinical application. European Respiratory Journal 2012; 40: P 2466 (Abstract). https://erj.ersjournals.com/content/40/Suppl_56/P2466 
  5. Woods CR. False-positive results for immunoglobulin M serologic results: explanations and examples. J Ped Infect Dis Soc 2013;2:87-90. https://www.ncbi.nlm.nih.gov/pubmed/26619450

If you liked this post, sign up under MENU and get future pearls straight into your mailbox!

My patient with erythema multiforme has tested positive for Mycoplasma pneumoniae IgM antibody. Does this mean she has an acute M. pneumonia infection as the cause of her acute illness?

My patient with history of intravenous drug use has noticed excessive growth of thick hair at the site of a previous abscess on her arm. Is there a connection between skin and soft tissue infections and localized hypertrichosis?

Localized hypertrichosis after infectious rash or “HAIR”, has been reported following a variety of skin and soft tissue infections (SSTIs), including sites of previous septic thrombophlebitis, cellulitis and olecranon bursitis. 1,2  A similar phenomenon has also been described in infants with recent chicken pox, as well non-infectious skin conditions arising from repeated irritation, friction, burns, excoriated insect bites, and fractures with cast application.1,2

Although heat and hyperemia have been implicated as growth stimulants for the hair follicle, 3 the exact mechanism of this intriguing phenomenon is unclear. It is possible that the sustained inflammatory process associated with chronic or more severe SSTIs leads to protracted stimulation of certain growth receptors in the human hair follicles (eg, transient vanilloid receptor-1) through heat and inflammation, as observed in mice in vivo.4

Aside from its possibly undesirable esthetic effects, localized HAIR appears to have no adverse health consequences, is reversible, and should require no further evaluation.

Note: 2 of the publications cited were written by the author of this post.

References

  1. Manian, FA. Localized hypertrichosis after infectious rash in adults. JAAD Case Reports 2015; 1:106-7. https://www.jaadcasereports.org/article/S2352-5126(15)00051-X/pdf
  2. Manian, FA. Localized hypertrichosis after infectious rash (“HAIR”) in adults: a report of 5 cases. Open Forum Infect Dis 2014;1 (Suppl 1):S195-S195. http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC5782143&blobtype=pdf
  3. Leung AK, Kiefer GN. Localized acquired hypertrichosis associated with fracture and cast application. J Natl Med Assoc 1989;81:65-7. https://www.ncbi.nlm.nih.gov/pubmed/2724357
  4. Bodo E, Biro T, Telek A, et al. A hot new twist to hair biology; involvement of vanilloid receptor-1 (VR1/TRPV1) signaling in human hair growth control. Am J Pathol 1005;166:985-8. https://www.sciencedirect.com/science/article/pii/S0002944010623206

 

If you liked this post, sign up under MENU and catch future pearls straight into your mailbox!

My patient with history of intravenous drug use has noticed excessive growth of thick hair at the site of a previous abscess on her arm. Is there a connection between skin and soft tissue infections and localized hypertrichosis?

My patient with cocaine and alcohol addiction is admitted with repeated convulsions during which he seems totally conscious. What could I be missing?

Consider strychnine poisoning as a cause of recurrent generalized tonic clonic seizures and muscle spasm with clear sensorium either during or following the episode. 1-4 In contrast to the cortical source of most seizures, convulsions due to strychnine poisoning are due to the blocking of the action of spinal and brain-stem inhibitory neurons resulting in overwhelming muscle rigidity, not unlike that seen in tetanus.

Although strychnine was found in various tonics and cathartic agents and was a common cause of accidental death in children under 5 years of age in early 20th century, it is still used in various rodenticides and pesticides.3  Today, it may be used intentionally in suicide attempts as well as an adulterant in street drugs, such as amphetamines, heroin and especially cocaine. 1,3,5

The initial symptoms of strychnine poisoning include nervousness, a hyperalert state, and confusion. These symptoms may be followed by severe muscle rigidity throughout the body often in response to minimal stimuli, such as physical contact, bright lights, noise and medical procedures.3, 6,7  Interestingly, strychnine also has an excitatory action on the medulla and enhances the sensation of touch, smell, hearing and sight.6  The cause of death is usually respiratory arrest due to prolonged muscle spasms, often complicated by rhabdomyolysis and associated renal failure.1

So among the numerous causes of seizures, think of strychnine as another potential cause when there is no concurrent loss of consciousness or the expected postictal state.

Bonus Pearl: Did you know that strychnine may be present in street drugs with a variety of names such as “back breakers”, “homicide”, “red rock opium”, “red stuff” and “spike”? 7

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 

References

  1. Wood DM, Webser E, Martinez D, et al. Case report: survival after deliberate strychnine self-poisoning, with toxicokinetic data. Critical Care 2002;6:456-9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC130147/
  2. Santhosh GJ, Joseph W, Thomas M. Strychnine poisoning. J Assoc Physicians India 2003;51:736. https://www.ncbi.nlm.nih.gov/pubmed/14621058
  3. Libenson MH, Young JM. Case records of Massachusetts General Hospital. A 16 years boy with an altered mental status and muscle rigidity. N Engl J Med 2001;344:1232-9. https://www.nejm.org/doi/full/10.1056/NEJM200104193441608
  4. Smith BA. Strychnine poisoning. J Emerg Med 1990;8: 321-25. https://www.ncbi.nlm.nih.gov/pubmed/2197324
  5. O’Callaghan WG, Ward M, Lavelle P, et al. Unusual strychnine poisoning and its treatment: report of eight cases. B Med J 1982;285:478. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1499293/
  6. Burn DJ, Tomson CRV, Seviour J, et al. Strychnine poisoning as an unusual cause of convulsions. Postgrad Med J 1989;65:563-64. https://www.ncbi.nlm.nih.gov/pubmed/2602253
  7. Radosavljevic J, Jeffries WS, Peter JV. Intentional strychnine use and overdose—an entity of the past? Crit Care Resusc 2006;8: 260-61. https://www.ncbi.nlm.nih.gov/pubmed/16930120

 

My patient with cocaine and alcohol addiction is admitted with repeated convulsions during which he seems totally conscious. What could I be missing?