Could measurement of urinary albumin-protein ratio be useful in my patient with renal insufficiency and proteinuria?

A spot urine test for determination of albumin-protein ratio (uAPR) may be useful in distinguishing glomerular vs tubulointerstitial source of proteinuria. A low (<0.4) uAPR, defined as urinary albumin to creatinine ratio(uACR)/urinary protein to creatinine ratio (uAPR) is more suggestive of a tubulointerstitial renal disease and less suggestive of glomerular pathology.1-3  

A 2012 study involving simultaneous measurements of urinary albumin and total protein in over 1000 proteinuric patients found a relatively high (0.84) area under curve (AUC) in a receiver operating characteristic curve analysis for uAPR (vs 0.74 for uACR and 0.54 for uPCR) in discriminating between tubular and non-tubular proteinuria pattern on urine protein electrophoresis and immunofixation. An uAPR cut-off of <0.4 was found to be 88% sensitive and 99% specific for the diagnosis of primary tubulointerstitial disorders on renal biopsy.1  

Due to the limitations of this study (including a relatively small subset of patient who had renal biopsy), a related editorial concluded that a low uAPR gives a “reasonable prediction of a tubular electrophoretic proteinuria”, but that it warrants further validation. Nevertheless, uAPR could potentially be useful in patients with moderate proteinuria (>300 mg/day to <3 g/day) who have not had renal biopsy and  where assessment of likelihood of tubulointerstitial vs glomerular source of proteinuria is desired.3 Interestingly, the utility of uAPR in predicting non-glomerular source of hematuria has also been reported.4

Bonus pearl: Did you know that the negatively-charged glomerular capillary wall repels negatively charged albumin thus preventing its filtration (charge-barrier) (5)?  

Liked this post? Download the app on your smart phone, and sign up below to catch future pearls right into your inbox, all for free! Thank you!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. Smith ER, Cai MMX, McMahon LP, et al. The value of simultaneous measurement of urinary albumin and total protein in proteinuric patients. Nephrol Dial Transplant 2012;27:1534-41. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4035283/
  2. Fraser SDS, Roderick PJ, McIntyre NJ, et al. Assessment of proteinuria in patients with chronic kidney disease stage 3: albuminuria and non-albumin proteinuria. PLOS ONE 2014;9:e98261. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4035283/pdf/pone.0098261.pdf
  3. Ellam T, Nahas ME. Urinary albumin to protein ratio: more of the same or making a difference. Nephrol Dial Transplant 2012;27:1293-96. https://www.ncbi.nlm.nih.gov/pubmed/22362784
  4. Ohisa N, Yoshida K, Matsuki R, et al. A comparison of urinary albumin-total protein ratio to phase-contrast microscopic examination of urine sediment for differentiating glomerular and nonglomerular bleeding. Am J Kidney Dis 2008;52:235-41. https://www.ajkd.org/article/S0272-6386(08)00828-7/pdf
  5. Venkat KK. Proteinuria and microalbuminuria in adults: significance, evaluation, and treatment. S Med J 2004;97:969-79. https://internal.medicine.ufl.edu/files/2012/07/5.18.05.04.-Proteinuria-review.pdf
Could measurement of urinary albumin-protein ratio be useful in my patient with renal insufficiency and proteinuria?

Should I use aPTT or anti-Xa levels to monitor my patient on IV heparin infusion?

Despite more than half a century of use unfractionated heparin (UFH), the optimal method to monitor its anticoagulation effect remains unclear, with arguments for and against continued use of activated partial thromboplastin time, aPTT) vs switching to antifactor Xa heparin assay (anti-Xa HA). 1-4

The advantage of aPTT include decades of use and familiarity by providers, and its relative accessibility, ease of automation and cost.1 Its disadvantages include variation among the sensitivities of different aPTT reagents as well as susceptibility to factors that do not reflect intrinsic heparin activity (eg, liver dysfunction, hypercoagulable states). 1,2 Thus patients may receive unnecessarily high or low heparin doses because of physiologic and non-physiologic influences on aPTT.

In contrast, since anti-XA HA measures the inhibition of a single enzyme (factor Xa)1, it is a more direct measurement of heparin activity, with less variability and minimal interference by certain biological factors (eg, lupus anticoagulants). Anti-Xa monitoring may also improve the time to therapeutic anticoagulation and lead to fewer dose adjustments compared to aPTT monitoring.2

The disadvantages of anti-Xa HA include inaccuracy in the setting of hypertriglyceridemia (>360 mg/dL), hyperbilirubinemia (total bilirubin >6.6 mg/dL), recent use of low molecular weight heparin, fondaparinux and direct oral factor Xa inhibitors. Its relative expense and generally less laboratory availability among healthcare facilities may also limit its use in monitoring patients on therapeutic UFH. 1-3

Somewhat unsettling is the frequent discordance between aPTT and anti-Xa values having been reported in 46% to 60% of instances that may result in either thromboembolic or bleeding complications. 1,4 One study reported that aPTT may be therapeutic only 35% of the time that anti-Xa is also therapeutic! 2

What’s clearly missing are definitive studies that can shed light on the clinical impact of these intriguing findings on patient outcomes. So stay tuned!

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free! Thank you!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. Guervil DJ, Rosenberg AF, Winterstein AG, et al. Activated partial thromboplastin time versus antifactory Xa heparin assay in monitoring unfractionated heparin by continuous intravenous infusion. Ann Pharmacother 2011;45:861-68. https://www.ncbi.nlm.nih.gov/pubmed/21712506
  2. Whitman-Purves E, Coons, JC, Miller T, et al. Performance of Anti-factor Xa versus activated partial thromboplastin time for heparin monitoring using multiple nomograms. Clinical and Applied Thromosis/Hemostasis 2018;24:310-16. https://www.ncbi.nlm.nih.gov/pubmed/29212374
  3. Fruge KS, Lee YR. Comparison of unfractionated heparin protocols using antifactory XA monitoring or activated partial thrombin time monitoring. Am J Health-System Pharmacy. 2015; 72: S90-S97, https://doi.org/10.2146/sp150016
  4. Samuel S, Allison TA, Sharaf S, et al. Antifactor XA levels vs activated partial thromboplastin time for monitoring unfractionated heparin. A pilot study. J Clin Pharm Ther 2016;41:499-502.
  5. doi:10.1111/jcpt.12415. https://www.ncbi.nlm.nih.gov/pubmed/27381025
Should I use aPTT or anti-Xa levels to monitor my patient on IV heparin infusion?

When should I suspect invasive pulmonary aspergillosis in my patient with COPD exacerbation?

Think of invasive pulmonary aspergillosis (IPA) in your patient when she or he has a COPD exacerbation that appears refractory to broad-spectrum antibiotics and high doses of steroids. Heighten your suspicion even more in patients with severe-steroid dependent COPD, presence of a new pulmonary infiltrate or isolation of Aspergillus spp from respiratory cultures. 1

It’s worth remembering that although dyspnea and bronchospasm are found in most COPD patients with IPA, in contrast to haematological patients, fever, chest pain and hemoptysis are usually absent in this patient population.1

Diagnosis of IPA in this patient population is challenging for several reasons including: 1. A definitive or “proven” diagnosis requires histopathologic evidence of Aspergillus invasion of lung tissue which is not possible without subjecting an already fragile patient to invasive procedures (eg, lung aspiration or biopsy); 2. In contrast to IPA in highly susceptible immunocompromised patients with cancer and recipients of hematopoietic stem cell transplants, standardized definition of IPA in patients with COPD is lacking; 1,3 and 3. Frequent colonization of the respiratory tract of COPD patients with Aspergillus spp (16.3 per 1000 COPD admission in 1 study) 4,5, makes it difficult to diagnose IPA based on cultures alone.

Aside from respiratory cultures, another non-invasive test, serum galactomannan (GM, a polysaccharide antigen that exists primarily in the cell walls of Aspergillus spp and released into the blood during its growth phase 6) may have some utility in suggesting IPA in COPD patients, albeit with a mediocre sensitivity (~30-60%) but respectable specificity (>80 %). In contrast, bronchoalveolar lavage fluid GM may have better sensitivity  (~75%-90%) with similar specificity as that of serum GM in the diagnosis of IPA in these patients 7-8

Bonus pearl: Did you know that the incidence of IPA appears to be increasing in COPD patients requiring ICU admission, with reported mortality rates of 67% to 100%? 7

If you liked this post, download P4P app and sign up under MENU to catch future pearls right into your inbox, all for free!

 

References

  1. Bulpa P, Dive A, Sibille Y. Invasive pulmonary aspergillosis in patients with chronic obstructive pulmonary disease. Eur Res J 2007;30:782-800. https://www.ncbi.nlm.nih.gov/pubmed/17906086
  2. Bulpa P, Bihin B, Dimopoulos G, et al. Which algorithm diagnoses invasive pulmonary aspergillosis best in ICU patietns with COPD? Eur Resir J 2017;50:1700532 https://www.ncbi.nlm.nih.gov/pubmed/28954783
  3. Barberan J, Garcia-Perez FJ, Villena V, et al. Development of aspergillosis in a cohort of non-neutropenic, non-transplant patients colonized by Aspergillus spp. BMC Infect Dis 2017;17:34. https://link.springer.com/article/10.1186/s12879-016-2143-5
  4. Guinea J, Torres-Narbona M, Gijon P, et al. Pulmonary aspergillosis in patients with chronic obstructive pulmonary disease: incidence, risk factors, and outcome. Clin Microbiol Infect 2010; 16:870-77. https://www.sciencedirect.com/science/article/pii/S1198743X14617432
  5. Blot Stijn I, Taccone FS, Van den Abeele A-M, et al. A clinical algorithm to diagnose invasive pulmonary aspergillosis in critically ill patients. Am J Respir Crit Care Med 202;186:56-64. https://www.atsjournals.org/doi/full/10.1164/rccm.201111-1978OC
  6. Pfeiffer CD, Fine JP, Safdar N. Diagnosis of invasive aspergillosis using a galactomannan assay: a meta-analysis. Clin Infect Dis 2006;42:1417-27. https://academic.oup.com/cid/article/42/10/1417/278148
  7. He H, Ding L, Sun B, et al. Role of galactomannan determinations in bronchoalveolar lavage fluid samples from critically ill patients with chronic obstructive pulmonary disease for the diagnosis of invasive pulmonary aspergillosis: a prospective study. Critical Care 2012;16:R138. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5066034/
  8. Zhou W, Li H, Zhang Y, et al. Diagnostic value of galactomannan antigen test in serum and bronchoalveolar lavage fluid samples from patients with nonneutropenic invasive pulmonary aspergillosis. J Clin Microbiol 2017;55:2153-61. https://www.ncbi.nlm.nih.gov/pubmed/28446576
When should I suspect invasive pulmonary aspergillosis in my patient with COPD exacerbation?

How useful is serum 1, 3-β-D-glucan in diagnosing Pneumocystis jiroveci pneumonia and invasive fungal disease?

Serum 1, 3-β-D-glucan (BG) is highly accurate for Pneumocystis jiroveci pneumonia (PJP), but only moderately accurate for diagnosing invasive fungal disease (IFD).

For PJP, a meta-analysis of studies looking at the performance of BG found a pooled sensitivity of 96%, specificity of 84% and area under receiver operating characteristic curve (AUC-ROC) of 0.96. 1 Thus, a negative BG essentially rules out PJP.

For IFD (primarily invasive candidiasis or aspergillosis), data based on 3 separate meta-analyses came to similar conclusions with a pooled sensitivity and specificity of ~80% and AUC-ROC of ~0.89 each.1-3 In some of the studies,2,3 the sensitivity of BG for IFD was between 50% to 60% which makes it difficult to exclude IFD when BG is normal.

Remember that BG may be false-positive in a variety of situations, including patients receiving immunological preparations (eg albumin or globulins), use of membranes and filters made from cellulose in hemodialysis, and use of cotton gauze swabs/packs/pads and sponges during surgery. 1 In addition, although BG is a component of the cell wall of most fungi, there are some exceptions including Zygomycetes and cryptococci.

Bonus pearl: Did you know that BG assay is based on Limulus amoebocyte lysate, extracted from amoebocytes of horseshoe crab species? 3

If you like this post, sign up under MENU and catch future pearls right in your inbox!

References

  1. Onishi A, Sugiyama D, Kogata Y, et al. Diagnostic accuracy of serum 1,3-β-D-glucan for Pneumocystis jiroveci pneumonia, invasive candidiasis, and invasive aspergillosis: systematic review and meta-analysis. J Clin Microbiol 2012;50:7-15. https://www.ncbi.nlm.nih.gov/pubmed/22075593
  2. He S, Hang JP, Zhang L, et al. A systematic review and meta-analysis of diagnostic accuracy of serum 1,3–β-D-glucan for invasive fungal infection: focus on cutoff levels. J Microbiol Immunol Infect 2015;48:351-61. https://www.ncbi.nlm.nih.gov/pubmed/25081986
  3. Karageogopoulos DE, Vouloumanou EK, Ntziora F, et al. β-D-glucan assay for the diagnosis of invasive fungal infections: a meta-analysis. Clin Infect Dis 2011;52:750-69. https://academic.oup.com/cid/article/52/6/750/361658/

 

How useful is serum 1, 3-β-D-glucan in diagnosing Pneumocystis jiroveci pneumonia and invasive fungal disease?

My patient with COPD exacerbation has an elevated venous blood PCO2. How accurate is the peripheral venous blood gas PC02 in patients with hypercarbia?

Short answer: Not as accurate as we might like! An elevated venous pC02 is a good indicator of the presence of arterial hypercarbia but beyond that if you really want to know what the arterial pC02 is in your patient with hypercarbia, you should get an arterial blood gas (ABG).

 
A meta-analysis of studies involving patients with COPD presenting to the emergency department (ED) found a good agreement for pH and bicarbonate values between arterial and venous blood gases but not for pC02 or p02 (1). More specifically, the 95% limit of agreement varied widely from -17 to +26 mmHg between venous and arterial pC02 (average difference ~6.0 mm). In the same study, a venous pC02 of ~45 mmHg or less correctly identified patients who were hypercarbic based on ABG. Similar results have been reported by other studies involving patients with COPD exacerbation (2,3).

 
Another meta-analysis involving all comers (COPD and non-COPD patients) concluded that venous pC02 should not be used as a substitute for arterial pC02 when accurate pC02 is required (4). In fact, they emphasized that venous pC02 was not always greater than arterial pC02!

 
Bonus pearl: Did you know that an unexpectedly low bicarbonate level in a patient with COPD and CO2 retention should alert us to the possibility of concurrent metabolic acidosis (eg, due to lactic acidosis, uremia)?

If you like this post, sign up under MENU and catch future pearls right into your inbox! Download the app on your Android!

References
1. Lim BL, Kelly AM. A meta-analysis on the utility of peripheral venous blood gas analyses in exacerbations of chronic obstructive pulmonary disease in the emergency department. Eur J Emerg Med 2010;17:246-48. https://journals.lww.com/euro-emergencymed/Abstract/2010/10000/A_meta_analysis_on_the_utility_of_peripheral.2.aspx
2. McCanny P, Bennett K, Staunton P, et a. Venous vs arterial blood gases in the assessment of patients presenting with an exacerbation of chronic obstructive pulmonary disease. Am J Emerg Med 2012;30:896-900. https://www.sciencedirect.com/science/article/abs/pii/S0735675711002865
3. McKeevere TM, Hearson G, Housely G, et al. Using venous blood gas analysis in the assessment of COPD exacerbations: a prospective cohort study. Thorax 2016;71:210-15. https://www.researchgate.net/publication/285545995_Using_venous_blood_gas_analysis_in_the_assessment_of_COPD_exacerbations_A_prospective_cohort_study
4. Byrne AL, Bennett M, Chatterji R, et al. Peripheral venous and arterial blood gas analysis in adults:are they comparable? A systematic review and meta-analysis. Respirology 2014;19:168-75. https://onlinelibrary.wiley.com/doi/full/10.1111/resp.12225

My patient with COPD exacerbation has an elevated venous blood PCO2. How accurate is the peripheral venous blood gas PC02 in patients with hypercarbia?

What is the significance of teardrop cells (dacrocytes) on the peripheral smear of my patient with newly-discovered pancytopenia?

The presence of teardrop cells (dacrocytes) (Figure below) in the peripheral blood, named for their tear drop shape, is a prominent feature of myelophthisic (marrow infiltrative) conditions, including myelofibrosis, hematologic malignancies, cancer metastatic to the bone marrow, and granulomatous diseases. Teardrop cells may also be seen in beta-thalassemia, autoimmune and microangiopathic hemolytic anemia and severe iron deficiency (1-4).

 
When evaluating patients with leucoerythroblastic smears (defined by the presence of early myeloid and erythroid forms), the presence of teardrop cells can be helpful in distinguishing often malignant marrow infiltrative conditions from a benign reactive process.  Conditions where teardrop cells are seen with high frequency may also have extramedullary hematopoiesis, particularly in the spleen (1,2).

 
The mechanism of tear drop cell formation may be multifactorial but appears to involve distortion of the red cells as they pass through marrow or splenic sinusoids. Teardrop cells resulting from conditions such as cancer metastatic to the bone marrow likely involve primarily a marrow origin of the cells whereas primary myelofibrosis with prominent extramedullary hematopoiesis include a splenic mechanism of tear drop cell formation (2).

 
Supporting the possible splenic contribution to teardrop cell formation is the observation that teardrop cells may be reduced in number or eliminated entirely after splenectomy in patients with myelofibrosis and autoimmune hemolytic anemia (1,4).

Teardrop

Figure. Teardrop cells

References

1. DiBella NJ, Sliverstein MN, Hoagland HC. Effect of splenectomy on teardrop-shaped erythrocytes in agnogenic myeloid metaplasia. Arch Intern Med 1977; 137: 380-381. https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/586447
2. Gutgemann I, Heimpel H, Nebe CT. Significance of teardrop cells in peripheral blood smears. J Lab Med 2014; DOI: 10.1515/labmed-2014-0005 https://www.researchgate.net/publication/272430111_Significance_of_teardrop_cells_in_peripheral_blood_smears
3. Korber C, Wolfler A, Neubauer M, Robier Christoph. Red blood cell morphology in patients with β-thalassemia minor. J Lab Med 2016-12-10 | https://www.researchgate.net/publication/311564128_Red_blood_cell_morphology_in_patients_with_b-thalassemia_minor DOI: https://doi.org/10.1515/labmed-2016-0052
4. Robier C, Klescher D, Reicht G,Amouzadeh-Ghadikolai O, Quehenberger F, Neubauer M. Dacrocytes are a common morphologic feature of autoimmune and microangiopathic haemolytic anaemia. Clin Chem Lab Med. 2015;53:1073-6. https://www.ncbi.nlm.nih.gov/pubmed/25503671

Contributed by Tom Spitzer, MD, Director of Cellular Therapy and Transplantation Laboratory,  Massachusetts General Hospital, Boston, MA.
If you liked this post, sign up under MENU and get future pearls right into your mailbox!

What is the significance of teardrop cells (dacrocytes) on the peripheral smear of my patient with newly-discovered pancytopenia?

Does the time of day matter when performing cosyntropin stimulation test on my patient with suspected adrenal insufficiency?

No, it doesn’t! Although there is a diurnal variation in serum cortisol level, time of the day does not have an appreciable impact on the synthetic ACTH, also known as cosyntropin (Cortrosyn), stimulation test results.

A 2018 retrospective cohort study found that outcomes from cosyntropin stimulation (CS) testing was not affected by time of the day (0800-1000 h vs 1001-1200 h vs after 1200 h).1

An experimental study involving healthy volunteers with normal adrenal function also found that the time of day of CS testing (250  mcg IV) did not influence the peak or the delta of cortisol levels when measured by immunoassay.2 Similarly, an experiment involving normal volunteers concluded that while compared to testing at 0800 h the afternoon (1600) cortisol response to CS was more pronounced at 5 and 15 min, there was no significant difference in cortisol levels at 30 min.3  Parenthetically, peak cortisol level is usually obtained at 1 h after IV cosynstropin administration.

So if you think your patient should undergo CS testing, there is no reason to wait until the next morning!

Bonus Pearl: Did you know that while the half-life of cortisol is between 70-120 min, the half-life of cosyntropin is only 15 min? 4

 

References

  1. Munro V, Elnenaei M, Doucette S, et al. The effect of time of day testing and utility of 30 and 60 min cortisol values in the 250 mcg ACTH stimulation test. Clin Biochem 2018;54:37-41. https://www.ncbi.nlm.nih.gov/pubmed/29458002
  2. Jonklaas J, Holst JP, Verbalis JG, et al. Changes in steroid concentration with the timing of corticotropin stimulation testing in participants with adrenal insufficiency. Endocr Pract 2012;18:66-75. https://www.ncbi.nlm.nih.gov/pubmed/21856601
  3. Dickstein G, Shechner C, Nicholson WE, et al. Adrenocorticotropin stimulation test: effect of basal cortisol level, time of day, and suggested new sensitive low dose test. J Clin Endocrinol Metab 72:773-78. https://www.ncbi.nlm.nih.gov/pubmed/2005201
  4. Hamilton DD, Cotton BA. Cosyntropin as a diagnostic agent in the screening of patients for adrenocortical insufficiency. Clinical Pharmacology Advances and Applications 2010;2:77-82. https://www.ncbi.nlm.nih.gov/pubmed/22291489

If you liked this post, sign up under MENU and get future pearls straight into your mailbox!

Does the time of day matter when performing cosyntropin stimulation test on my patient with suspected adrenal insufficiency?

My patient with erythema multiforme has tested positive for Mycoplasma pneumoniae IgM antibody. Does this mean she has an acute M. pneumonia infection as the cause of her acute illness?

Not necessarily! Although detection of IgM in the serum of patients has proven valuable in diagnosing many infections during their early phase, particularly before IgG is detected, less well known is that false-positive IgM results are not uncommon. 1

More specific to M. pneumoniae IgM, false-positive results have been reported in 10-80% of patients without a clinical diagnosis of acute M. pneumoniae infection 2-4 and 3-15% of blood donors. 4

False-positive IgM results may also occur when testing for other infectious agents, such as the agent of Lyme disease (Borrelia burgdorferi), arboviruses (eg, Zika virus), and herpes simplex, Epstein-Barr, cytomegalovirus, hepatitis A and measles viruses. 1,5  

Reports of false positive IgM results include a patient with congestive heart failure and mildly elevated liver enzymes who had a false-positive hepatitis IgM which led to unnecessary public health investigation and exclusion from an adult day care center. 1 Another patient with sulfa rash had a false-positive measles IgM antibody resulting in callback of >100 patients and healthcare providers for testing!5

There are many potential mechanisms for false-positive IgM results, including polyclonal B cell activation, “vigorous immune response”, cross-reactive antibodies, autoimmune disease, subclinical reactivation of latent viruses, influenza vaccination, overreading weakly reactive results, and persistence of antibodies long after the resolution of the acute disease. 1,2

In our patient, a significant rise in M. pneumoniae IgG between acute and convalescent samples several weeks apart may be more helpful in diagnosing an acute infection accounting for her erythema multiforme.

 

References

  1. Landry ML. Immunoglobulin M for acute infection: true or false? Clin Vac Immunol 2016;23:540-5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933779/
  2. Csango PA, Pedersen JE, Hess RD. Comparison of four Mycoplasma pneumoniae IgM-, IgG- and IgA-specific enzyme immunoassays in blood donors and patients. Clin Micro Infect 2004;10:1089-1104. https://www.clinicalmicrobiologyandinfection.com/article/S1198-743X(14)63853-2/pdf
  3. Thacker WL, Talkington DF. Analysis of complement fixation and commercial enzyme immunoassays for detection of antibodies to Mycoplasma pneumoniae in human serum. Clin Diag Lab Immunol 2000;7:778-80. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC95955/
  4. Ryuta U, Juri O, Inoue Y, et al. Rapid detection of Mycoplasma pneumoniae IgM antibodies using immunoCard Mycoplasma kit compared with complement fixation (CF) tests and clinical application. European Respiratory Journal 2012; 40: P 2466 (Abstract). https://erj.ersjournals.com/content/40/Suppl_56/P2466 
  5. Woods CR. False-positive results for immunoglobulin M serologic results: explanations and examples. J Ped Infect Dis Soc 2013;2:87-90. https://www.ncbi.nlm.nih.gov/pubmed/26619450

If you liked this post, sign up under MENU and get future pearls straight into your mailbox!

My patient with erythema multiforme has tested positive for Mycoplasma pneumoniae IgM antibody. Does this mean she has an acute M. pneumonia infection as the cause of her acute illness?

My patient with headache following a fall has a pink cerebrospinal fluid but the lab reports it xanthochromic. Isn’t xanthochromia supposed to describe yellow discoloration only?

Although xanthochromia literally means yellow color, when it comes to describing the color of the cerebrospinal fluid (CSF), a more liberal—but perhaps misleading— definition of xanthochromia extending to other colors, such as pink and orange, is commonly found in the literature. 1-5

In the presence of red blood cells (RBCs) in the subarachnoid space, as seen in subarachnoid hemorrhage (SAH), 3 pigments are formed by the breakdown of hemoglobin in the CSF: oxyhemoglobin, methemoglobin, and bilirubin. Oxyhemoglobin is typically red but has also been reported to appear orange or orange-yellow with dilution.6  Methemoglobin is brown and bilirubin is yellow. Of these pigments, only bilirubin can be formed solely from in vivo conversion, while oxyhemoglobin and methemoglobin may also form after CSF has been obtained (eg, in tubes).  Due to the suboptimal reliability of visual inspection, some have argued for the routine use of spectrophotometry of the CSF instead in patients with suspected SAH.7

In our patient, the “pink xanthochromia” may be related to RBC breakdown either due to a SAH or as a result of hemolysis in the sample tubes themselves, especially if there was a delay in processing the specimen. Even if he had “true xanthochromia” with yellow discoloration of CSF, make sure to exclude other causes besides SAH, such as high CSF protein, hyperbilirubinemia, rifampin therapy, and high carotenoid intake (eg, carrots).

 

References

  1. Seehusen DA, Reeves MM, Fomin DA. Cerebrospinal fluid analysis. Am Fam Phys 2003;68:1103-8. https://www.aafp.org/afp/2003/0915/p1103.pdf
  2. Edlow JA, Bruner KS, Horowitz GL. Xanthochromia. A survey of laboratory methodology and its clinical implications. Arch Pthol Lab Med 2002;126:413-15.
  3. Lo BM, Quinn SM. Gross xanthochromia on lumbar puncture may not represent an acute subarachnoid hemorrhage. Am J Emerg Med 2009;27:621-23.
  4. Koenig M. Approach to the patient with bloody or pigmented cerebrospinal fluid. In Irani DN, ed, Cerebrospinal fluid in clinical practice. 2009. https://doi.org/10.1016/B978-1-4160-2908-3.X0001-6
  5. Welch H, Hasbun R. Bacterial infections of the central nervous system. In Handbook of Clinical Neurology, 2010. https://www.sciencedirect.com/handbook/handbook-of-clinical-neurology/vol/96/suppl/C
  6. Barrows LJ, Hunter FT, Banker BQ. The nature and clinical significance of pigments in the cerebrospinal fluid. Brain 1955; 58: 59-80. https://www.ncbi.nlm.nih.gov/pubmed/14378450
  7. Cruickshank A, Auld P, Beetham R, et al. Revised national guidelines for analysis of cerebrospinal fluid for bilirubin in suspected subarachnoid haemorrhage. Ann Clin Biochem 2008;45:238-44. https://www.ncbi.nlm.nih.gov/pubmed/18482910

If you liked this post, sign up under MENU and catch future pearls straight into your mailbox!

My patient with headache following a fall has a pink cerebrospinal fluid but the lab reports it xanthochromic. Isn’t xanthochromia supposed to describe yellow discoloration only?

My hospitalized patient with sepsis has persistently elevated lactic acid despite volume resuscitation, source control, and adequate oxygenation. What could I be missing?

Although the causes of lactic acidosis are legion (eg, sepsis, tissue hypoperfusion, ischemic bowel, malignancy, medications, liver dysfunction), thiamine deficiency (TD) is an often-overlooked cause of persistently elevated serum lactic acid (LA) in critically ill hospitalized patients,1 reported in 20-70% of septic patients.2  Septic shock patients may be particularly at risk of TD because of increased mitochondrial oxidative stress, decreased nutritional intake and presence of comorbid conditions (eg,  alcoholism, persistent vomiting).3

Early recognition of TD in hospitalized patients may be particularly difficult because of the frequent absence of the “classic” signs and symptoms of Wernicke’s encephalopathy (eg, ataxia, cranial nerve palsies and confusion) and lack of readily available confirmatory laboratory tests.4

TD-related lactic acidosis should be suspected when an elevated LA persists despite adequate treatment of its putative cause(s) (4,5). Administration of IV thiamine in this setting may result in rapid clearance of LA.3-5

TD causes lactic acidosis type B which is due to the generation of excess LA, not impairment in tissue oxygenation, as is the case for lactic acidosis type A. Thiamine is an essential co-factor in aerobic metabolism, facilitating the conversion of pyruvate to acetyl-CoA which enters the citric acid (Krebs) cycle within the mitochondria. In TD, pyruvate does not undergo aerobic metabolism and is converted to LA instead, leading to lactic acidosis.

Bonus pearl: Did you know that because of its limited tissue storage, thiamine stores may be depleted within only 3 weeks of reduced oral intake!

References

  1. O’Donnell K. Lactic acidosis: a lesser known side effect of thiamine deficiency. Practical Gastroenterol March 2017:24.   https://www.practicalgastro.com/article/176921/Lactic-Acidosis-Lesser-Known-Side-Effect-of-Thiamine-Deficiency
  2. Marik PE. Thiamine: an essential component of the metabolic resuscitation protocol. Crit Care Med 2018;46:1869-70. https://journals.lww.com/ccmjournal/Fulltext/2018/11000/Thiamine___An_Essential_Component_of_the_Metabolic.23.aspx
  3. Woolum JA, Abner EL, Kelly A, et al. Effect of thiamine administration on lactate clearance and mortality in patients with septic shock. Crit Care Med 2018;46:1747-52. https://journals.lww.com/ccmjournal/Fulltext/2018/11000/Effect_of_Thiamine_Administration_on_Lactate.5.aspx
  4. Kourouni I, Pirrotta S, Mathew J, et al. Thiamine: an underutilized agent in refractory lactic acidosis. Chest 2016; 150:247A. https://journal.chestnet.org/article/S0012-3692(16)56459-9/pdf
  5. Shah S, Wald E. Type B lactic acidosis secondary to thiamine deficiency in a child with malignancy. Pediatrics 2015; 135:e221-e224. http://pediatrics.aappublications.org/content/135/1/e221

If you like this post, sign up under MENU and get future pearls straight into your mailbox!

My hospitalized patient with sepsis has persistently elevated lactic acid despite volume resuscitation, source control, and adequate oxygenation. What could I be missing?