Why is my hospitalized patient with alcohol withdrawal syndrome so thrombocytopenic?

Although thrombocytopenia associated with chronic alcoholism may be related to complications of cirrhosis (eg, platelet sequestration in spleen due to portal hypertension, poor platelet production, and increased platelet destruction) (1), it may also occur in the absence of cirrhosis due to the direct toxic effect of alcohol on platelet production and survival (2).

In a prospective study of patients ingesting the equivalent of a fifth or more daily of 86 proof whiskey admitted for treatment of alcohol withdrawal—without evidence of severe liver disease, infection or sepsis— 81% had initial platelet counts below 150,000/µl, with about one-third having platelet counts below 100,000 µl (as low as 24,000/ul) (3).

In most patients, 2-3 days elapsed before the platelet count began to rise significantly, peaking 5-18 days after admission. Others have also reported that platelet counts rise within 5-7 days and normalize in a few weeks after alcohol withdrawal (1); bleeding complications have been uncommon in this setting.

Perhaps even more intriguing is the report of the association between thrombocytopenia in early alcohol withdrawal and the development of delirium tremens or seizures (sensitivity and specificity ~ 70%, positive predictive value less than 10% but with a negative predictive value of 99%) (4)! In fact, the authors suggested that, if their findings are corroborated, a normal platelet count could potentially be used to identify patients at low risk of alcohol withdrawal syndrome and therefore outpatient therapy. 

1. Mitchell O, Feldman D, Diakow M, et al. The pathophysiology of thrombocytopenia in chronic liver disease. Hepatic Medicine: Evidence and Research 2016;8 39-50. https://www.dovepress.com/the-pathophysiology-of-thrombocytopenia-in-chronic-liver-disease-peer-reviewed-article-HMER
2. Cowan DH. Effect of alcoholism on hemostasis. Semin Hematol 1980;17:137-47. https://www.ncbi.nlm.nih.gov/pubmed/6990498
3. Cowan DH, Hines JD. Thrombocytopenia of severe alcoholism. Ann Intern Med 1971;74:37-43. http://annals.org/aim/article-abstract/685069/thrombocytopenia-severe-alcoholism.

4. Berggren U, Falke C, Berglund KJ, et al. Thrombocytopenia in early alcohol withdrawal is associated with development of delirium tremens or seizures. Alcohol & Alcoholism 2009;44:382-86. https://www.ncbi.nlm.nih.gov/pubmed/19293148

If you like this pearl, sign up under menu and receive future pearls right into your mailbox!

Why is my hospitalized patient with alcohol withdrawal syndrome so thrombocytopenic?

Is it possible to have acute pancreatitis with normal serum lipase?

Yes! Although an elevated serum lipase has a negative predictive value of 94%-100% for acute pancreatitis (1), there are ample reports in the literature of patients with CT findings of pancreatitis in the presence of abdominal symptoms but with normal serum lipase and/or amylase (2,3).

A case series and review of literature of acute pancreatitis with normal lipase and amylase failed to reveal any specific risk factors for such observation (2). More specifically, the etiologies of acute pancreatitis in the reported cases have varied, including drug-induced, cholelithiasis, alcohol, hypertriglyceridemia, and postoperative causes.

But what accounts for this phenomenon? Many cases have been associated with the first bout of pancreatitis without evidence of pancreatic calcifications which makes the possibility of a “burned-out” pancreas without sufficient acinar cells to release lipase as a frequent cause unlikely. Other potential explanations for normal lipase in acute pancreatitis have included measurement of serum lipase at a very early phase of the disease before significant destruction of acinar cells has occurred (increases in 3-6 h, peaks at 24 h [4]) and more rapid renal clearance of serum lipase due to tubular dysfunction (2).

Of note, unlike amylase, lipase is totally reabsorbed by renal tubules under normal conditions (5). Thus, it’s conceivable that even a reversible tubular dysfunction may lead to increased clearance of serum lipase and potentially lower its levels.
1. Ko K, Tello LC, Salt J. Acute pancreatitis with normal amylase and lipase. The Medicine Forum. 2011;11 Article 4. https://jdc.jefferson.edu/tmf/vol11/iss1/4/
2. Singh A, Shrestha M. Acute pancreatitis with normal amylase and lipase-an ED dilemma. Am J Emerg Med 2016;940.e5-940.e7. https://www.ncbi.nlm.nih.gov/pubmed/26521195
3. Limon O, Sahin E, Kantar FU, et al. A rare entity in ED: normal lipase level in acute pancreatitis. Turk J Emerg Med 2016;16:32-34. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4882216/
4. Shah AM, Eddi R, Kothari ST, et al. Acute pancreatitis with normal serum lipase: a case series. J Pancreas (Online) 2010 July 5;11:369-72. PDF
5. Lott JA, Lu CJ. Lipase isoforms and amylase isoenzymes: assays and application in the diagnosis of acute pancreatitis. Clin Chem 1991;37:361-68. https://www.ncbi.nlm.nih.gov/pubmed/1706232
If you liked this post, sign up under menu to receive future P4P pearls right into your mailbox!

Is it possible to have acute pancreatitis with normal serum lipase?

Can I rule out primary adrenal insufficiency by obtaining a single morning serum cortisol level in my hospitalized patient with unexplained hyponatremia?

Primary adrenal insufficiency (PAI) can be confidently ruled out when the morning (eg, 6 AM) serum cortisol level is greater than 17 ug/dl. Lower cut-off values are associated with lower probability of excluding PAI: > 10 ug/dl, 62%-67% and ≥5 ug/dl, 36%. 1,2 Conversely, PAI is highly likely when the morning serum cortisol level is less than 3 ug/dl. 3

Since many patients may have serum cortisol levels between 3 ug/dl and 17 ug/dl (ie, in the “indeterminate” range), confirmatory testing commonly performed through cosyntropin stimulation test (CST) is often necessary.

Although the standard CST involves measuring serum cortisol levels at baseline, 30 min, and 60 min with peak cortisol level <18 ug/dl indicative of PAI, several studies have reported that a single post-CST cortisol level obtained at 60 min may also be diagnostic. 3



  1. Erturk E, Jaffe CA, Barkan AL. Evaluation of the integrity of the hypothalamic-pituitary-adrenal axis by insulin hypoglycemia test. J Clin Endocrinol Metab 83;2350-54. https://www.ncbi.nlm.nih.gov/pubmed/9661607
  2. Bornstein SR, Allolio B, Arlt W, et al. Diagnosis and treatment of primary adrenal insufficiency: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2016;101:364-89. https://academic.oup.com/jcem/article/101/2/364/2810222
  3. Odom DC, Gronowski AM, Odom E, et al. A single, post-ACTH cortisol measurement to screen for adrenal insufficiency in the hospitalized patient. J Hosp Med 2018;13: E1-E5. https://www.ncbi.nlm.nih.gov/pubmed/29444197
Can I rule out primary adrenal insufficiency by obtaining a single morning serum cortisol level in my hospitalized patient with unexplained hyponatremia?

Should I order a blood transfusion based on the hemoglobin (Hgb) or the hematocrit (Hct)?

Despite the frequent interchangeability of Hgb (g/dL) and Hct (%) by a ratio of ~1:3, directly-measured blood Hgb levels may be preferred for assessing the need for blood transfusion for at least 3 reasons:

First, in contrast to the widely-used automated measurements of Hct, Hgb is not affected by conditions that affect the size of the RBCs or the mean corpuscular Hgb concentration (MCHC). This is because the Hct is not a direct measure of Hgb; rather it’s the proportion of blood occupied by RBCs which, in automated systems, is derived by multiplying the number of RBCs by the mean corpuscular volume (MCV).1-3

This may not be a significant issue when MCHC is normal, but when MCHC is abnormal, HCT may not accurately reflect the blood Hgb concentration. For example, in patients with hypochromic iron deficiency anemia with RBCs containing less hemoglobin (ie, low MCHC), the Hct may overestimate blood Hgb levels. Conversely in hereditary spherocytosis with its attendant low RBC volume and high MCHC, the Hct may underestimate Hgb levels.

Second, Hct results may also be more subject to technical factors in the lab. For example, blood at room temperature between 6-24 h may be associated with RBC swelling and increased Hct without any change in its Hgb concentration.4

Finally, national and international guidelines on blood transfusion generally target Hgb, not Hct results.5-7

For a related pearl, go to https://pearls4peers.com/2016/11/01/should-i-use-a-hemoglobin-level-of-7-or-8-gdl-as-a-threshold-for-blood-transfusion-in-my-hospitalized-patient.



  1. Tefferi A, Hanson CA, Inwards DJ. How to interpret and pursue an abnormal complete blood cell count in adults. Mayo Clin Proc 2005;80:923-36. https://www.ncbi.nlm.nih.gov/pubmed/16007898
  2. Macdougall IC, Ritz E. The Normal Haematocrit Trial in dialysis patients with cardiac disease: are we any the less confused about target hemoglobin? Nephrol Dial Transplant 1998;13:3030-33. https://academic.oup.com/ndt/article-pdf/13/12/3030/9907456/3030.pdf
  3. Kelleher BP, Wall C, O’Broin SD. Haemoglobin, not haematocrit, should be the preferred parameter. Nephrol Dial Transplant 2001;16:1085-87. https://www.ncbi.nlm.nih.gov/pubmed/11328933
  4. Hayuanta HH. Can hemoglobin-hematocrit relationship be used to assess hydration status? CDK-237/vol 43 no.2, th. 2016 http://www.kalbemed.com/Portals/6/20_237Opini-Can%20Hemoglobin-Hematocrit%20Relationship%20Be%20Used%20to%20Assess%20Hydration%20Status.pdf
  5. Blood transfusion. NICE guideline, November, 2015. https://www.nice.org.uk/guidance/ng24/chapter/Recommendations#fresh-frozen-plasma-2 uk
  6. National Blood Authority: Australia. Patient blood management, November 2016. https://www.blood.gov.au/system/files/documents/nba-patient-blood-management-resource-guide-nov_2016_v3_sm_web_file.pdf
  7. Carson JL, Guyatt G, Heddle NM, et al. Clinical practice guidelines from the AAABB: red blood cell transfusion thresholds and storage. JAMA 2016; 316:2025-2035. https://www.ncbi.nlm.nih.gov/pubmed/27732721


If you like this pearl, don’t forget to sign up for future pearls delivered directly to your mailbox from “Oceans of Knowledge”!

Should I order a blood transfusion based on the hemoglobin (Hgb) or the hematocrit (Hct)?

How should I interpret the growth of “normal respiratory flora” from sputum of my patient with community-acquired pneumonia (CAP)?

Since the primary reason for obtaining a sputum culture in a patient with pneumonia is to sample the lower respiratory tract, you should first verify that the sputum was “adequate” by reviewing the gram stain. Absence of neutrophils (unless the patient is neutropenic) with or without epithelial cells on gram stain of sputum suggests that it may not be an adequate sample (ie, likely saliva)1, and therefore growth of normal respiratory flora (NRF) should not be surprising in this setting.  

Other potential explanations for NRF on sputum culture in patients with CAP include:2-5

  • Delay in sputum processing with possible overgrowth of oropharyngeal flora.
  • Pneumonia caused by pathogens that do not grow on standard sputum culture media (eg, atypical organisms, viruses, anaerobes).
  • Pneumonia caused by potential pathogens such as as Streptococcus mitis and Streptococcus anginosus group that may be part of the NRF.
  • Initiation of antibiotics prior to cultures (eg, in pneumococcal pneumonia).

Of note, since 2010, several studies have shown that over 50% of patients with CAP do not have an identifiable cause.3 So, growing NRF from sputum of patients with CAP appears to be common.


  1. Wong LK, Barry AL, Horgan SM. Comparison of six different criteria for judging the acceptability of sputum specimens. J Clin Microbiol 1982;16:627-631. https://www.ncbi.nlm.nih.gov/pubmed/7153311
  2. Donowitz GR. Acute pneumonia. In Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases (2010). Churchill Livingstone, pp 891-916.
  3. Musher DM, Abers MS, Bartlett JG. Evolving understanding of the causes of pneumonia in adults, with special attention to the role of pneumococcus. Clin Infect Dis 2017;65: 1736-44. https://www.ncbi.nlm.nih.gov/pubmed/29028977
  4. Abers MS, Musher DM. The yield of sputum culture in bacteremic pneumococcal pneumonia after initiation of antibiotics. Clin Infect Dis 2014; 58:1782. https://www.ncbi.nlm.nih.gov/pubmed/24604901
  5. Bartlett JG, Gorbach SL, Finegold SM. The bacteriology of aspiration pneumonia. Bartlett JG, Gorbach SL, Finegold SM. Am J Med 1974;56:202-7. https://www.ncbi.nlm.nih.gov/pubmed/4812076
How should I interpret the growth of “normal respiratory flora” from sputum of my patient with community-acquired pneumonia (CAP)?

My patient with pyelonephritis has positive blood cultures for E. coli? Should I order repeat blood cultures to make sure the bacteremia is clearing?

Although a common practice, follow-up blood cultures (FUBCs) may not be necessary in otherwise clinically stable or improving patients with aerobic gram-negative bacteremia. This is probably due to the often-transient nature of gram-negative bloodstream infections  and less propensity of these organisms to cause intravascular infections (eg, endocarditis) compared to gram-positives. 1

A 2017 study addressing the value of FUBCs in gram-negative bacteremia found that repeat positive blood cultures were uncommon with positive results not associated with mortality or higher ICU admissions. 1 Specifically, 17 FUBCs had to be drawn to yield 1 positive result.  Although the numbers of positive FUBCs were too low for in-depth analysis, it was concluded that FUBCs added little value in the management of gram-negative bacteremias.

In contrast, FUBCs are recommended in the following situations: 1-3

  • Staphylocccus aureus bacteremia given the propensity of this organism to cause intravascular (eg, endocarditis) and metastatic infections.
  • Presumed or documented endocarditis or intravascular device infections (eg, intravenous catheters and pacemakers) to document timely clearance of bacteremia
  • Infections involving organisms that may be difficult to clear such as fungemia or multi-drug resistant pathogens.

As with many things in medicine, clinical context is important before ordering tests and blood cultures are no different. The urge to order FUBCs should also be balanced with the possibility of having to deal with  contaminants. 


  1. Canzoneri CN, Akhavan BJ, Tosur Z et al. Follow-up blood cultures in gram-negative bacteremia: Are they needed? Clin Infect Dis 2017;65:1776-9. https://www.ncbi.nlm.nih.gov/pubmed/29020307
  2. Tabriz MS, Riederer K, Baran J, et al. Repeating blood cultures during hospital stay: Practice pattern at a teaching hospital and a proposal for guidelines. Clin Microbiol Infect 2004;10:624-27. https://onlinelibrary.wiley.com/doi/full/10.1111/j.1469-0691.2004.00893.x
  3. Mylotte JM, Tayara A. Blood cultures: Clinical aspects and controversies. Eur J Clin Microbiol Infect Dis 200;19:157-63. https://www.ncbi.nlm.nih.gov/pubmed/10795587



My patient with pyelonephritis has positive blood cultures for E. coli? Should I order repeat blood cultures to make sure the bacteremia is clearing?

My 35 year old patient with Crohn’s disease has peripheral neuropathy but no anemia or macrocytosis. Could he still have vitamin B-12 deficiency?

Absolutely! A significant number of patients with B-12 deficiency are neither anemic nor have macrocytosis but may still have related neurological symptoms.

A large study involving a nationally representative sample of older U.S. adults (aged >50 y) sponsored by the CDC reported a prevalence of B-12 deficiency without anemia or without macrocytosis of about 4% each . 1 Interestingly, in this study,  there was no evidence that mandatory folic acid fortification of certain foods was associated with lower prevalence of B-12 deficiency without anemia or macrocytosis.

In another study, the proportion of subjects with low serum B-12 but without macrocytosis was 70% or higher, irrespective of pre- or post-fortification period.2 Interestingly, in the age group <65 y, the post-fortification was associated with significantly higher proportion of patients without macrocytosis (85% vs. 45% in the prefortification period) in this study.

Younger age groups seem to also be overrepresented among patients with B-12 deficiency but no anemia, with a prevalence of 50% in <60 y age group with B-12 deficiency compared to 38% and 31% among older age groups (60-74 y and >74 y, respectively).3

So, keep B-12 deficiency in mind in the presence of compatible neurological symptoms even in the absence anemia or macrocytosis!



  1. Qi YP, Do AN, Hamner HC, et al. The prevalence of low serum vitamin B-12 status in the absence of anemia or macrocytosis did not increase among older U.S. adults after mandatory folic acid fortification. J Nutr 2014;144:170-76. http://jn.nutrition.org/content/144/2/170.abstract
  2. Wyckoff KF, Ganji V. Proportion of individuals with low serum vitamin B-12 concentrations without macrocytosis is higher in the post-folic acid fortification period than in the pre-folic acid fortification period. Am J Clin Nutr 2007;86:1187-92. https://www.ncbi.nlm.nih.gov/pubmed/17921401
  3. Mills JL, Von Kohorn I, Conley MR, et al. Low vitamin B-12 concentrations in patients without anemia: the effect of folic acid fortification of grain. Am J Clin Nutr 2003;77:1474-7. http://ajcn.nutrition.org/content/77/6/1474.full.pdf+html
My 35 year old patient with Crohn’s disease has peripheral neuropathy but no anemia or macrocytosis. Could he still have vitamin B-12 deficiency?