Should I consider treating my patient with heart failure with an SGLT2 inhibitor?

Absolutely! Although sodium glucose cotransporter 2 (SGLT2) inhibitors are often used for their antidiabetic properties, more recently they have been shown to have extraordinary benefits in patients with heart failure.

 In 2015, a large randomized controlled trial, EMPA-REG OUTCOME, showed that empagliflozin significantly lowered overall death, death from cardiovascular events, and hospitalizations for heart failure in patients who had type II diabetes (T2DM) and cardiovascular disease1.

Later, 2 other randomized controlled trials showed that patients with heart failure with reduced ejection fractions (HFrEF), irrespective of a diagnosis of T2DM, had lower rates of death from cardiovascular causes and better heart failure outcomes when treated with SGLT2 inhibitors2,3.

In 2021, the EMPEROR Preserved trial showed that SGLT2 inhibitors provide significant clinical benefit for patients with heart failure with preserved ejection fraction (HFpEF), irrespective of the presence of T2DM4. In addition, multiple studies have shown substantial benefit to starting SGLT2 inhibitors during or shortly after a hospitalization for heart failure.5,6,7

 The effectiveness of SGLT2 inhibitors in heart failure is also reflected in the updated guidelines from the American College of Cardiology/American Heart Association8  that recommend  use of SGLT2 inhibitors in patients with chronic symptomatic HFrEF.  In addition,  the guidelines state that SGLT2 inhibitors can be beneficial in decreasing heart failure hospitalizations and cardiovascular mortality for patients mildly reduced ejection fraction and those with HFpEF.

 Potential mechanisms of action of SGLT2 inhibitors in heart failure include reduction in myocardial oxidative stress, decrease cardiac preload and afterload, increase endothelial function, decrease arterial stiffness, and increase muscle free fatty acid uptake which leads to increased availability of ketones during times of stress.9 

So the data to date suggest that we should consider SGLT2 inhibitors as part of our armamentarium for treatment of heart failure unless, of course, there are contraindications, including pregnancy/risk of pregnancy, breastfeeding, eGFR <30mL/min/1.73 m2, symptoms of hypotension, systolic blood pressure <95mmHg, or a known allergic/other adverse reactions. 10

Bonus Pearl: Did you know that SGLT 2 inhibitors are derived from phlorizin, a naturally occurring phenol glycoside first isolated back in 1835 from the bark of apple tree in 1835? 11

Contributed by Yisrael Wallach, MD, St. Louis, Missouri

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. Zinman, B., Wanner, C., Lachin, J. M., Fitchett, D., Bluhmki, E., Hantel, S., … & Inzucchi, S. E. (2015). Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. New England Journal of Medicine, 373(22), 2117-2128. https://pubmed.ncbi.nlm.nih.gov/26378978/
  2. McMurray, J. J., Solomon, S. D., Inzucchi, S. E., Køber, L., Kosiborod, M. N., Martinez, F. A., … & Langkilde, A. M. (2019). Dapagliflozin in patients with heart failure and reduced ejection fraction. New England Journal of Medicine, 381(21), 1995-2008. https://pubmed.ncbi.nlm.nih.gov/31535829/
  3. Packer, M., Anker, S. D., Butler, J., Filippatos, G., Pocock, S. J., Carson, P., … & Zannad, F. (2020). Cardiovascular and renal outcomes with empagliflozin in heart failure. New England Journal of Medicine, 383(15), 1413-1424. https://pubmed.ncbi.nlm.nih.gov/32865377/
  4. Anker, S. D., Butler, J., Filippatos, G., Ferreira, J. P., Bocchi, E., Böhm, M., … & Packer, M. (2021). Empagliflozin in heart failure with a preserved ejection fraction. New England Journal of Medicine, 385(16), 1451-1461. https://pubmed.ncbi.nlm.nih.gov/34449189/
  5. Cunningham, J. W., Vaduganathan, M., Claggett, B. L., Kulac, I. J., Desai, A. S., Jhund, P. S., … & Solomon, S. D. (2022). Dapagliflozin in Patients Recently Hospitalized With Heart Failure and Mildly Reduced or Preserved Ejection Fraction. Journal of the American College of Cardiology. https://pubmed.ncbi.nlm.nih.gov/36041912/
  6. Voors, A. A., Angermann, C. E., Teerlink, J. R., Collins, S. P., Kosiborod, M., Biegus, J., … & Ponikowski, P. (2022). The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure: a multinational randomized trial. Nature medicine, 28(3), 568-574. https://pubmed.ncbi.nlm.nih.gov/35228754/
  7. Bhatt, D. L., Szarek, M., Steg, P. G., Cannon, C. P., Leiter, L. A., McGuire, D. K., … & Pitt, B. (2021). Sotagliflozin in patients with diabetes and recent worsening heart failure. New England Journal of Medicine, 384(2), 117-128. https://pubmed.ncbi.nlm.nih.gov/33200892/
  8. Heidenreich, P. A., Bozkurt, B., Aguilar, D., Allen, L. A., Byun, J. J., Colvin, M. M., … & Yancy, C. W. (2022). 2022 AHA/ACC/HFSA guideline for the management of heart failure: Executive summary: a report of the American College of Cardiology/American heart association joint Committee on clinical practice guidelines. Journal of the American College of Cardiology, 79(17), 1757-1780. https://pubmed.ncbi.nlm.nih.gov/35379504/
  9. Muscoli, S., Barillà, F., Tajmir, R., Meloni, M., Della Morte, D., Bellia, A., … & Andreadi, A. (2022). The New Role of SGLT2 Inhibitors in the Management of Heart Failure: Current Evidence and Future Perspective. Pharmaceutics, 14(8), 1730. https://pubmed.ncbi.nlm.nih.gov/36015359/
  10. Aktaa, S., Abdin, A., Arbelo, E., Burri, H., Vernooy, K., Blomström-Lundqvist, C., … & Gale, C. P. (2022). European Society of Cardiology Quality Indicators for the care and outcomes of cardiac pacing: developed by the Working Group for Cardiac Pacing Quality Indicators in collaboration with the European Heart Rhythm Association of the European Society of Cardiology. EP Europace, 24(1), 165-172. https://pubmed.ncbi.nlm.nih.gov/34455442/
  11. Petersen, C. (1835). Analyse des phloridzins. Annalen der pharmacie, 15(2), 178-178. 

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Mercy Hospital-St. Louis, Massachusetts General Hospital, Harvard Catalyst, Harvard University, their affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

 

 

Should I consider treating my patient with heart failure with an SGLT2 inhibitor?

What’s the connection between severe hypoglycemia and hypothermia?

The association of severe hypoglycemia and low body temperatures has been well documented at least since 1960s.  Hypothermia is thought to be caused by low blood glucose in the brain (neuroglucopenia) which may serve as a protective mechanism for decreasing energy demand during glucose deprivation.1-2

A 2012 retrospective study involving mostly patients with diabetes mellitus with severe hypoglycemia (majority with serum glucose 18-54 mg/dl) found that 23% of patients had hypothermia (defined as body temperature < 95◦F or 35◦C). The incidence of hypothermia was not affected by age, diabetes, season or time of day.  Two patients had extremely low temperatures (<90◦F).  There was an association between hypothermia and severity of hypoglycemia.1

An older experimental study (1974) involving 36 recumbent nude men in thermoneutral environment found that that insulin-induced hypoglycemia was associated with rectal temperatures below 96.2◦F (36◦C) in 33%.  Cooling was attributed to reduction in heat production and to secretion of sweat, peripheral vasodilatation and hyperventilation.2

But before you attribute hypothermia to hypoglycemia, make sure other causes of hypothermia such as sepsis, hypoadrenalism, hypothyroidism, alcohol and stroke are ruled out.3  

Bonus Pearl: Did you know that heat production is accomplished by shivering, which can increase the normal basal metabolic rate by 2-5 times as well as via non-shivering thermogenesis through increased levels of thyroxine and epinephrine?3

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. Tran C, Gariani K, Hermann FR, et al. Hypothermia is a frequent sign of severe hypoglycaemia in patients with diabetes. Diab Metab 2012;38:370-72. https://www.sciencedirect.com/science/article/abs/pii/S1262363612000535?via%3Dihub
  2. Strauch BS, Felig P, Baxter JD, et al. Hypothermia in hypoglycemia. JAMA 1969;210:345-46. https://jamanetwork.com/journals/jama/article-abstract/349081
  3. McCullough L, Arora S. Diagnosis and treatment of hypothermia. Am Fam Physician 2004;70:2325-2332. https://www.aafp.org/afp/2004/1215/p2325.html

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Mercy Hospital-St. Louis or its affiliate healthcare centers, Mass General Hospital, Harvard Medical School or its affiliated institutions. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

What’s the connection between severe hypoglycemia and hypothermia?

Why is my diabetic patient complaining of arm pain and localized edema for couple of weeks without an obvious cause?

Aside from the usual suspects associated with a painful extremity (eg, trauma, deep venous thrombosis and soft tissue infections), think of spontaneous diabetic myonecrosis (DMN), also known as diabetic muscle infarction (1-3).

DMN is characterized by abrupt onset of painful swelling of the affected muscle, most often of the lower extremities, but also occasionally upper extremities. DMN occurs in patients with longstanding DM whose blood glucose control has deteriorated over time, often with nephropathy, retinopathy and/or neuropathy (1-3).

Couple of things to remember when considering DMN in your differential of a painful extremity. First, except for localized edema and tenderness over the involved muscle, the exam may be unremarkable. Specifically, there is no erythema or signs of compartment syndrome and fever is absent in the great majority of patients (~90%) (2). Even white blood cell count and creatine kinase (CK) are usually normal. The reason for normal CK at presentation is not clear but CK might have already peaked by the time of patient presentation (3). In contrast, C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) are usually elevated (>80%) (1).

MRI (without contrast in patients with renal insufficiency) is the imaging of choice with muscle enlargement and edema with hyperintense signal on T2-weighted images and other changes, including perifascial, perimuscular and or subcutaneous edema (1-3). Muscle biopsy is not currently recommended because of its adverse impact on time to symptomatic improvement. Non-surgical therapy, with rest, analgesia and glycemic control is usually recommended (1-3).

 
Though its exact cause is still unclear, atherosclerosis, diabetic microangiopathy, vasculitis with thrombosis and ischemia-reperfusion injury have been posited as potential precipitants for DMN. The role of anti-phospholipid syndrome, particularly in patients with type I DM, is unclear (1,2).

 
Bonus pearl: Did you know that symptoms of DMN may last for weeks with at least one-third of patients having a recurrence in the same muscle or elsewhere (1)?

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Reference
1. Horton WB, Taylor JS, Ragland TJ, et al. Diabetic muscle infarction: a systematic review. BMJ Open Diabetes Research and Care 2015;3:e000082.
2. Trujillo-Santos AJ. Diabetic muscle infarction. An underdiagnosed complication of long-standing diabetes. Diabetes Care 2003;26:211-15.
3. Diabetes muscle infarction in end-stage renal disease:A scoping review on epidemiology, diagnosis and treatment. World J Nephrol 2018;7:58-64.

Why is my diabetic patient complaining of arm pain and localized edema for couple of weeks without an obvious cause?

Can hypothyroidism be associated with hypertension?

Short answer: Yes! Just as hyperthyroidism, hypothyroidism is also associated with hypertension (1-5). Compared to normal subjects, patients with hypothyroidism have a 3-fold increased prevalence of hypertension, usually diastolic (2). In fact, hypothyroidism has been identified as a cause of hypertension in 3% of patients with high blood pressure and is the most common cause of secondary hypertension after renovascular hypertension (1-3).

 
High systemic vascular resistance and increased arterial stiffness are among the important mechanisms explaining hypothyroid-induced hypertension (1). High systemic vascular resistance is thought to be due to the absence of the vasodilator effects of T3 on vascular smooth muscle and decreased response to beta-adrenergic stimulation, which in turn leads to increased alpha-adrenergic responses. Increased arterial stiffness may also contribute due to the myxedema involvement of the arterial wall. Other potential factors include free water retention due to an inappropriate secretion of anti-diuretic hormone (ADH) and obesity in hypothyroid patients (1,4).

 
Similar to its prevalence in hypothyroidism, hypertension is about 3-fold higher in patients with overt hyperthyroidism compared to normal subjects (1). However, in contrast to hypothyroid patients, the hypertension in hyperthyroidism is primarily “cardiogenic”, where the increased blood pressure levels are mainly maintained by the increased cardiac output due to high stroke volume and heart rate (1).

 
Thus, both hypothyroidism and hyperthyroidism can be associated with hypertension!

 
Bonus pearl: Did you know that hypertension due to hypothyroidism is typically associated with a low-renin state, is particularly sensitive to salt intake, and may not respond as well to angiotensin -converting enzyme inhibitors (1)?

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 
References
1. Mazza A, Beltramello G, Armigliato M, et al. Arterial hypertension and thyroid disorders: what is important to know in clinical practice? Annales d’Endocrinologie 2011;72:296-303. https://www.sciencedirect.com/science/article/abs/pii/S0003426611000886
2. Dernellis J, Panaretou M. Effects of thyroid replacement therapy on arterial blood pressure in patients with hypertension and hypothyroidism 2002; Am Heart J 2002;143:718-24. https://www.ncbi.nlm.nih.gov/pubmed/11923811
3. Anderson GH, Blakeman N, Steeten DHP. The effect of age on prevalence of secondary forms of hypertension in 4429 consecutively referred patients. J Hypertension 1994;12:609-15. https://insights.ovid.com/hypertension/jhype/1994/05/000/effect-age-prevalence-secondary-forms-hypertension/15/00004872
4. Saito I, ITO K, Saruta T. Hypothyroidism as a cause of hypertension. Hypertension 1983;5:112-15. https://www.ahajournals.org/doi/10.1161/01.hyp.5.1.112
5. Chaker L, Bianco AC, Jonklaas J, et al. Hypothyroidism. Lancet 2017;390:1550-62. https://www.ncbi.nlm.nih.gov/pubmed/28336049

Can hypothyroidism be associated with hypertension?

Does my patient on chronic prednisone need stress doses of corticosteroids perioperatively?

There are wide-ranging opinions on stress doses of corticosteroids (CS) in patients on chronic prednisone undergoing surgery, largely due to lack of adequately-sized randomized controlled studies.  Most experts seem to agree, however, that the age-old practice of routinely administering very high doses of hydrocortisone (eg, 100 mg IV every 8 hours) with prolonged taper postoperatively is excessive. 1-7

Couple of questions to consider before you decide on stress doses of CS for your patient with CS-induced (not primary) adrenal suppression. First, is your patient likely to have a suppressed adrenal function? And if so, what type of surgery is he or she about to undergo?

As for the first question, keep in mind that exogenous CS suppress the production of corticotropin (ACTH) and can induce adrenal atrophy that may persist for up to 12 months, an effect that’s dependent not only on their dose but also on their duration and may vary greatly from person to person. 2,4

Generally, a daily prednisone dose of 5 mg or less —irrespective of the duration— is considered unlikely to cause adrenal suppression (unless it’s given at bed time) and therefore should not require stress doses of CS.1 Conversely, clinical features of Cushing’s syndrome and prednisone doses of 20 mg or more daily for more than 3 weeks are likely to be associated with hyphothalamic-pituitary-adrenal (HPA) axis suppression.  Due to possible delay in the recovery of the HPA axis after discontinuation of exogenous CS, you should review not only your patient’s current dose and duration of CS but his or her regimen during the previous year. 2

When in doubt, particularly in patients receiving intermediate doses (eg, between 5 to 20 mg of prednisone daily) or duration of CS, testing the HPA axis (eg, by cosyntropin stimulation) has been suggested by some with the caveats that it’s a grade 2C (weak recommendation, low quality evidence) recommendation,7 and the results may not necessarily predict clinical adrenal insufficiency or be available before surgery. 4  

Once you have decided that your patient may be at risk of adrenal insufficiency during the perioperative period, the stress dose and duration of CS will likely depend on the type of surgery: “minor” (eg, inguinal herniorrhaphy); “moderate” (eg, total joint replacement, peripheral vascular surgery) and “major” (eg, pancreatoduodenectomy, cardiac surgery with cardiopulmonary bypass). 

A popular online resource suggests the following:4

  • Minor surgery or local anesthesia: Give only the morning maintenance dose of CS without any stress doses
  • Moderate surgery: Give the usual morning dose plus hydrocortisone IV 50 mg (or equivalent) just before the procedure followed by 25 mg IV every 8 hours for 24 hours, followed by the maintenance regimen
  • Major surgery: Give the usual morning dose plus hydrocortisone 100 mg IV before anesthesia induction, followed by 50 mg IV every 8 hours for 24 hours, tapering the dose by half each day to maintenance.

Alternatively, for minor and moderate procedures, other authors suggest usual daily dose plus hydrocortisone 50 mg IV before incision, followed by hydrocortisone 25 mg IV every 8 h for 24 h, then the usual daily dose.1  Yet others have recommended giving IV hydrocortisone 25 mg/day for 1 day for minor surgeries, 50-75 mg/day x 1-2 days for moderate surgeries, and 100-150 mg/day for 2-3 days for major surgeries.2-4 Whichever regimen you chose, make sure to give the morning maintenance dose.  

Why is less aggressive stress dosing being favored in these patients? Several reasons come to mind, including:

  •  In normal subjects, endogenous cortisol production rarely rises above 150-200 mg /day even in response to major surgery 2-4   
  • High doses of CS, particularly with long taper, may unnecessarily subject patients to adverse effects, such as hyperglycemia and poor wound healing 3,4
  • Published reports of CS-treated patients having complications such as hypotension or even death in the postoperative period have generally only implicated, not proven, adrenal insufficiency as a cause. 1-4

 

Bonus pearl: Did you know that the hypotension of secondary adrenal insufficiency in patients treated with CS is not caused by mineralocorticoid deficiency? Instead, it may in part be related to the action of CS in enhancing vascular responsiveness to vasopressors (eg, catecholamines).2 

If you like this post, download the P4P app on your smartphone and sign up

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

to catch future pearls right into your inbox, all for free!

References

  1. Liu MM, Reidy AB, Saatee S, et al. Perioperative steroid management: Approaches based on current evidence. Anesthesiology 2017;127:166-72. https://anesthesiology.pubs.asahq.org/article.aspx?articleid=2626031
  2. Axelrod L. Perioperative management of patients treated with glucocorticoids. Endocrinol Metab Clin N Am 2003;32:367-83. http://pggweb.com/doc/glucocorticoids.pdf
  3. Salem M, Tainsh RE Jr, Bromberg J, et al. Perioperative glucocorticoid coverage. A reassessment 42 years after emergence of a problem. Ann Surg 1997;219:416-25. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1243159/
  4. Shaw M. When is perioperative ‘steroid coverage’ necessary? Clev Clin J Med 2002;69:9-11. https://www.ncbi.nlm.nih.gov/pubmed/11811727
  5. Urmson K. Stress dose steroids: the dogma persists. Can J Anesthe 2019;September 23. https://www.ncbi.nlm.nih.gov/pubmed/31549340
  6. Wax DB. One size fits all for stress-dose steroids. Anesthesiology 208;128:674-87. https://anesthesiology.pubs.asahq.org/article.aspx?articleid=2672525
  7. Hamrahian AH, Roman S, Milan S. The management of the surgical patient taking glucocorticoids. Uptodate 2019, accessed October 21, 2019. https://www.uptodate.com/contents/the-management-of-the-surgical-patient-taking-glucocorticoids
Does my patient on chronic prednisone need stress doses of corticosteroids perioperatively?

I am admitting a patient with diabetes mellitus (DM) due to chronic pancreatitis. Should I manage her diabetes any differently than my other patients with DM?

You may have to!  That’s because patients with DM due to pancreatic disease (also known as “pancreatogenic [Type 3C] diabetes”) tend to have more labile blood glucoses with particular predisposition to severe hypoglycemic episodes due to the impairment of glucagon production by pancreatic alpha-cells. 1-3

This observation dates back to a 1977 study where a high rate of hypoglycemic episodes was found among 59 patients with chronic pancreatitis (most with insulin-dependent DM), including 3 deaths and 2 suffering from severe brain damage following hypoglycemic coma. Interestingly, low basal glucagon levels were found in the latter patients, supporting impairment in glucagon synthesis. Of note, while hypoglycemia is a serious problem in these patients, they are not spared from complications of chronic hyperglycemia, including retinopathy and kidney disease.2

As for the blood glucose management in type 3C DM, since the principle endocrine defect is insulin deficiency, insulin therapy is preferred for most patients, particularly those who are acutely ill or are hospitalized. For otherwise more stable patients with mild hyperglycemia, metformin is an ideal agent as it enhances hepatic insulin sensitivity without the risk of hypoglycemia. As a bonus, metformin may also decrease the risk of pancreatic cancer in chronic pancreatitis, based on observational studies. 4

Also, don’t forget that concurrent pancreatic exocrine insufficiency is common in patients with type 3C DM and requires oral pancreatic enzyme requirement with meals.

Fascinating Pearl: Did you know that in patients with type 3C DM, hyperglycemia is mediated not only by decreased production of insulin, but also by decreased synthesis of pancreatic polypeptide, a peptide that mediates hepatic insulin sensitivity and glucose production? 5

If you liked this post, download the app, sign up under MENU and catch future pearls right into your inbox, all for free!

References

  1. Linde, J, Nilsson LH, Barany FR. Diabetes and hypoglycemia in chronic pancreatitis. Scand J Gastroenterol. 2012;12, 369–373. https://www.ncbi.nlm.nih.gov/pubmed/867001
  2. Andersen D. The practical importance of recognizing pancreatogenic or type 3c diabetes. Diabetes Metab Res Rev. 2012;28:326-328. https://onlinelibrary.wiley.com/doi/abs/10.1002/dmrr.2285
  3. Cui YF, Andersen DK. Pancreatogenic diabetes: Special considerations for management. Pancreatology. 2011;11(3):279-294. doi:10.1159/000329188. https://jhu.pure.elsevier.com/en/publications/pancreatogenic-diabetes-special-considerations-for-management-4
  4. Evans J, Donnelly L, Emsley-Smith A. Metformin and reduced risk of cancer in diabetic patients. Br Med J. 2005;330:1304-1305. https://www.researchgate.net/publication/7888859_Metformin_and_reduced_risk_of_cancer_in_diabetic_patients
  5. Rabiee A. Gafiatsatos P, Salas-Carnillo R. Pancreatic polypeptide administration enhances insulin sensitivity and reduces the insulin requirement of patents on insulin pump therapy. Diabetes Sci Technol 2011;5:1521-28.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3262724/

Contributed by Hugo Torres, MD, MPH, Hospital Medicine Unit, Mass General Hospital, Boston, Massachusetts

I am admitting a patient with diabetes mellitus (DM) due to chronic pancreatitis. Should I manage her diabetes any differently than my other patients with DM?

Why is my patient with diabetic ketoacidosis (DKA) and hypovolemia hypertensive?

Although we may expect patients with DKA to present with hypotension due to hypovolemia, many patients with DKA may actually be hypertensive. This finding is particularly intriguing because hyperinsulinemia, not insulinopenia as found in DKA, has been associated with hypertension. 1,2

Though not proven, potential explanations for hypertension in DKA include elevated serum levels of catecholamines, pro-inflammatory cytokines, renin, angiotension II and aldosterone.3-5 Hyperosmolality may also lead to the release of antidiuretic hormone (ADH) which increases blood pressure via V2 receptors.  Another possibility is that the high insulin levels associated with the treatment of DKA suppress the catecholamine-stimulated production of vasodilative eicosanoids (eg, prostaglandins) by adipose tissue. 1 It’s possible that in any given patient, 1 or more of these mechanisms may be enough to override the potential hypotensive effect of insulin deficiency in DKA.

We should note that reports of frequent hypertension in DKA have primarily involved pediatric patients. A 2011 study found that 82% of pediatric patients with DKA had hypertension during the first 6 hours of admission with no patient having hypotension.3  

On the other extreme, refractory hypotension without obvious cause (eg, sepsis, acute adrenal insufficiency, cardiogenic causes) has also been reported in DKA.5Because insulin inhibits the production of vasodilative prostaglandins (eg, PGI2 and PGE2), severe insulin deficiency in DKA can also contribute to hypotension along with volume depletion. 

Potential genetic polymorphism in the synthesis and metabolism of prostaglandins may at least partially explain the varied blood pressure response and whether a patient with DKA presents with hypertension or hypotension. 5  

The author would like to acknowledge the valuable contribution of Lloyd Axelrod MD, Massachusetts General Hospital, to this post.

If you liked this post, sign up under MENU and catch future pearls right into your inbox!

References

  1. Axelrod L. Insulin, prostaglandins, and the pathogenesis of hypertension. Diabetes 1991;40:1223-1227. https://diabetes.diabetesjournals.org/content/40/10/1223&nbsp;
  2. Chatzipantelli K, Head C, Megerman J, et al. The relationship between plasma insulin level, prostaglandin productin by adipose tissue and blood pressure in normal rats and rats with diabetes mellitus and diabetic ketoacidosis. Metabolism 1996;45:691-98. https://www.sciencedirect.com/science/article/abs/pii/S002604959690133X&nbsp;
  3. Deeter KH, Roberts JS, Bradford H, et al. Hypertension despite dehydration during severe pediatric diabetic ketoacidosis. Pediatr Diabetes 2011;12:295-301. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-5448.2010.00695.x&nbsp;
  4. Ferris JB, O’Hare JA, Kelleher CM, et al. Diabetic control and the renin-angiotensin system, catecholamines and blood pressure. Hypertension 1985 7(Suppl II):II-58-II-63. https://www.ahajournals.org/doi/abs/10.1161/01.HYP.7.6_Pt_2.II58  
  5. Singh D, Cantu M, Marx MHM, et al. Diabetic ketoacidosis and fluid refractory hypotension. Clin Pediatrics 2016;55:182-84. https://journals.sagepub.com/doi/abs/10.1177/0009922815584549?journalCode=cpja&nbsp;

 

Why is my patient with diabetic ketoacidosis (DKA) and hypovolemia hypertensive?

My patient with diabetes mellitus is now admitted with pneumonia. Does diabetes increase the risk of pneumonia requiring hospitalization?

The weight of the evidence to date suggests that diabetes mellitus (DM) does increase the risk of pneumonia-related hospitalization.1-3

A large population-based study involving over 30,000 patients found an adjusted relative risk (RR) of hospitalization with pneumonia of 1.26 (95% C.I 1.2-1.3) among patients with DM compared to non-diabetics.  Of note, the risk of pneumonia-related hospitalization was significantly higher in type 1 as well as type 2 DM and among patients whose A1C level was ≥9.1  Another population-based study found a high prevalence of DM (25.6%) in patients hospitalized with CAP, more than double that in the population studied.2  A 2016 meta-analysis of observational studies also found increased incidence of respiratory tract infections among patients with diabetes (OR 1.35, 95% C.I. 1.3-1.4).

Not only does DM increase the risk of pneumonia-related hospitalization, but it also appears to adversely affect its outcome with increased in-hospital mortality.2 Among patients with type 2 DM,  excess mortality has also been reported at 30 days, 90 days and 1 year following hospitalization for pneumonia. 4,5 More specifically, compared to controls with CAP, 1 year mortality of patients with DM was 30% (vs 17%) in 1 study. 4

Potential reasons for the higher incidence of pneumonia among patients with DM include increased risk of aspiration (eg, in the setting of gastroparesis, decreased cough reflex), impaired immunity (eg, chemotaxis, intracellular killing), pulmonary microangiopathy and coexisting morbidity. 1,3,5,6

Bonus Pearl: Did you know that worldwide DM has reached epidemic levels, such that if DM were a nation, it would surpass the U.S. as the 3rd most populous country! 7

If you liked this post, sign up under MENU and catch future fresh pearls straight into your mailbox!

References

  1. Kornum JB, Thomsen RW, RUS A, et al. Diabetes, glycemic control, and risk of hospitalization with pneumonia. A population-based case-control study. Diabetes Care 2008;31:1541-45. https://www.ncbi.nlm.nih.gov/pubmed/17595354
  2. Martins M, Boavida JM, Raposo JF, et al. Diabetes hinders community-acquired pneumonia outcomes in hospitalized patients. BMJ Open Diabetes Research and Care 2016;4:e000181.doi:10.1136/bmjdrc-2015000181. https://drc.bmj.com/content/4/1/e000181
  3. Abu-Ahour W, Twells L, Valcour J, et al. The association between diabetes mellitus and incident infections: a systematic review and meta-analysis of observational studies. BMJ Open Diabetes Research and Care 2017;5:e000336. https://drc.bmj.com/content/5/1/e000336. 
  4. Falcone M, Tiseo G, Russo A, et al. Hospitalization for pneumonia is associated with decreased 1-year survival in patients with type 2 diabetes. Results from a prospective cohort study. Medicine 2016;95:e2531. https://www.ncbi.nlm.nih.gov/pubmed/26844461
  5. Kornum JB, Thomsen RW, Rus A, et al. Type 2 diabetes and pneumonia outcomes. A population-based cohort study. Diabetes Care 2007;30:2251-57. https://www.ncbi.nlm.nih.gov/pubmed/17595354
  6. Koziel H, Koziel MJ. Pulmonary complications of diabetes mellitus. Pneumonia. Infect Dis Clin North Am 1995;9:65-96. https://www.ncbi.nlm.nih.gov/pubmed/7769221
  7. Zimmet PZ. Diabetes and its drivers: the largest epidemic in human history? Clinical Diabetes and Endocrinology 2017;3:1 https://clindiabetesendo.biomedcentral.com/articles/10.1186/s40842-016-0039-3  

 

My patient with diabetes mellitus is now admitted with pneumonia. Does diabetes increase the risk of pneumonia requiring hospitalization?

Does the time of day matter when performing cosyntropin stimulation test on my patient with suspected adrenal insufficiency?

 

No, it doesn’t! Although there is a diurnal variation in serum cortisol level, time of the day does not have an appreciable impact on the synthetic ACTH, also known as cosyntropin (Cortrosyn), stimulation test results.

A 2018 retrospective cohort study found that outcomes from cosyntropin stimulation (CS) testing was not affected by time of the day (0800-1000 h vs 1001-1200 h vs after 1200 h).1

An experimental study involving healthy volunteers with normal adrenal function also found that the time of day of CS testing (250  mcg IV) did not influence the peak or the delta of cortisol levels when measured by immunoassay.2 Similarly, an experiment involving normal volunteers concluded that while compared to testing at 0800 h the afternoon (1600) cortisol response to CS was more pronounced at 5 and 15 min, there was no significant difference in cortisol levels at 30 min.3  Parenthetically, peak cortisol level is usually obtained at 1 h after IV cosynstropin administration.

So if you think your patient should undergo CS testing, there is no reason to wait until the next morning!

Bonus Pearl: Did you know that while the half-life of cortisol is between 70-120 min, the half-life of cosyntropin is only 15 min? 4

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 

References

  1. Munro V, Elnenaei M, Doucette S, et al. The effect of time of day testing and utility of 30 and 60 min cortisol values in the 250 mcg ACTH stimulation test. Clin Biochem 2018;54:37-41. https://www.ncbi.nlm.nih.gov/pubmed/29458002
  2. Jonklaas J, Holst JP, Verbalis JG, et al. Changes in steroid concentration with the timing of corticotropin stimulation testing in participants with adrenal insufficiency. Endocr Pract 2012;18:66-75. https://www.ncbi.nlm.nih.gov/pubmed/21856601
  3. Dickstein G, Shechner C, Nicholson WE, et al. Adrenocorticotropin stimulation test: effect of basal cortisol level, time of day, and suggested new sensitive low dose test. J Clin Endocrinol Metab 72:773-78. https://www.ncbi.nlm.nih.gov/pubmed/2005201
  4. Hamilton DD, Cotton BA. Cosyntropin as a diagnostic agent in the screening of patients for adrenocortical insufficiency. Clinical Pharmacology Advances and Applications 2010;2:77-82. https://www.ncbi.nlm.nih.gov/pubmed/22291489

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

Does the time of day matter when performing cosyntropin stimulation test on my patient with suspected adrenal insufficiency?

How does excess licorice consumption cause hypertension and hypokalemia?

The active ingredient of licorice, glycyrrhizic acid or glycyrrhizin, is first converted to glycyrrhetinic acid (GRA) in the bowel which is then absorbed. Once in the circulation, GRA inhibits activation of 11 β-hydroxysteroid dehydrogenase 2 (11 β-HSD2), an enzyme in renal tissue that converts active cortisol to inactive cortisone. Without the full action of this enzyme, proper sodium and potassium homeostasis would be difficult because cortisol is just as effective in stimulating mineralocorticoid receptors as aldosterone but with 100-1000 times higher concentration than that of aldosterone! 1-3

Other ways that GRA may cause hypertension and hypokalemia include inhibition of 5 β-reductase in the liver, an enzyme that metabolizes aldosterone and direct stimulation of mineralocorticoid receptors, though overall these mechanisms may not be as important as the effect of GRA on cortisol metabolism in renal tissue.1,2

Besides causing fluid retention, licorice ingestion has also been found to increase systemic vascular resistance possibly by increasing vascular tone and remodeling of the vascular wall, potentiating the vasoconstrictor actions of angiotensin II and catecholamines in smooth muscle, and suppressing vasodilatory systems, including endothelial nitric oxide synthase and prostacyclin synthesis.

It’s no wonder that the FDA issued a statement in 2017: “If you’re 40 or older, eating 2 ounces of black licorice a day for a day for at least two weeks could land you in the hospital with an irregular heart rhythm or arrhythmia.” 5

Bonus Pearl: Did you know that as early as 1951, extract of licorice was reported for treatment of Addison’s disease, a combination of licorice and soy sauce has been reported to be “life-saving” in a patient with Addison’s disease (2007), and GRA food supplementation may lower serum potassium in chronic hemodialysis patients (2009)? 6,7

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. Sontia B, Mooney J, Gaudet L, et al. Pseudohyperaldosteronism, liquorice and hypertension. J Clin Hypertens (Greenwich) 2008; 10:153-57. https://www.ncbi.nlm.nih.gov/pubmed/18256580
  2. Omar HR, Komarova I, El-Ghonemi M, et al. Licorice abuse: time to send a warning message. The Adv Endocrinol Metab 2012;3:125-138. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3498851/
  3. Penninkilampi R, Eslick EM, Eslick GD. The association between consistent licorice ingestion, hypertension and hypokalaemia: as systematic review and meta-analysis. Journal of Human Hypertension 2017;31:699-707. https://www.ncbi.nlm.nih.gov/pubmed/28660884
  4. Black licorice: trik or treat? https://www.fda.gov/ForConsumers/ConsumerUpdates/ucm 277152.htm
  5. Hautaniemi EJ, Tahvanainen AM, Koskela JK, et al. Voluntary liquorice ingestion increases blood pressure via increased volume load, elevated peripheral arterial resistance, and decreased aortic compliance. Sci Rep 2017;7:10947. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5591274/
  6. Groen J, Pelser H, Willebrands AF, et al. Extract of licorice for the treatment of Addison’s disease. N Engl J Med 1951;244:471-75. https://www.ncbi.nlm.nih.gov/pubmed/14806786
  7. Cooper H, Bhattacharya B, Verma V, et al. Liquorice and soy sauce, a life-saving concoction in a patient with Addison’s disease. Ann Clin Biochem 2007;44:397-99. https://www.ncbi.nlm.nih.gov/pubmed/17594790
  8. Farese S, Kruse Anja, Pasch A, et al. Glycyrrhetinic acid food supplementation lowers serum potassium concentration in chronic hemodialysis patients. Kidney International 2009;76:877-84. https://www.ncbi.nlm.nih.gov/pubmed/19641483

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Mercy Hospital-St. Louis or its affiliate healthcare centers, Mass General Hospital, Harvard Medical School or its affiliated institutions. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

How does excess licorice consumption cause hypertension and hypokalemia?