When should I consider Pseudomonas aeruginosa as a cause of respiratory tract infection in my hospitalized patient with COPD exacerbation?

The most consistent risk factor for isolation of P. aeruginosa from sputum of adults with COPD is the presence of more advanced pulmonary disease (eg, FEV-1 <35%-50% of predicted value) or functional impairment (1-5).

 

Chronic corticosteroid use is also frequently cited as an important predictor of respiratory tract colonization/infection due to P. aeruginosa in patients with COPD, while the data on antibiotic use during the previous months have been conflicting (2,4). Other risk factors may include prior isolation of P. aeruginosa and hospital admission during the previous year (1).

 
A prospective study of patients hospitalized for COPD exacerbation found P. aeruginosa to be the most frequently isolated organism, growing from 26% of validated sputum samples at initial admission, followed by Streptococcus pneumoniae and Hemophilus influenzae. In the same study, bronchiectasis (present in up to 50% of patients with COPD) was not shown to be independently associated with the isolation of P. aeruginosa (1).

 
Of interest, compared to the patients without P. aeruginosa, patients hospitalized for acute exacerbation of COPD and isolation of P. aeruginosa from sputum have significantly higher mortality: 33% at 1 year, 48% at 2 years and 59% at 3 years (5).

 

Liked this post? Download the app on your smart phone and sign up under Menu to catch future pearls straight into your inbox!
References
1. Garcia-Vidal C, Almagro P, Romani V, et al. Pseudomonas aeruginosa in patients hospitalized for COPD exacerbation: a prospective study. Eur Respir J 2009;34:1072-78. https://www.ncbi.nlm.nih.gov/pubmed/19386694
2. Murphy TF. Pseudomonas aeruginosa in adults with chronic obstructive pulmonary disease. Curr Opin Pulm Med 2009;15:138-42. https://www.ncbi.nlm.nih.gov/pubmed/19532029
3. Miravitlles M, Espinosa C, Fernandez-Laso E, et al. Relationship between bacterial flora in sputum and functional impairment in patients with acute exacerbations of COPD. Chest 1999;116:40-6. https://www.ncbi.nlm.nih.gov/pubmed/10424501
4. Murphy TF, Brauer AL, Eschberger K, et al. Pseudomonas aeruginosa in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2008;177:853-60. https://www.ncbi.nlm.nih.gov/pubmed/18202344
5. Almagro P, Silvado M, Garcia-Vidal C, et al. Pseudomonas aeruginosa and mortality after hospital admission for chronic obstructive pulmonary disease. Respiration 2012;84:36-43. https://www.karger.com/Article/FullText/331224

 

 

When should I consider Pseudomonas aeruginosa as a cause of respiratory tract infection in my hospitalized patient with COPD exacerbation?

Is my hospitalized patient with possible pneumonia at risk of Clostridium difficile-associated disease after only 1-3 days of empiric antibiotic therapy?

Yes! Even relatively brief duration of antibiotic therapy may increase the risk of Clostridium difficile-associated disease (CDAD) in a susceptible host.
In a study of hospitalized patients with new-onset diarrhea, prior exposure to levofloxacin and cefazolin was significantly associated with CDAD with the median duration of therapy for levofloxacin of 3 days (range 1-18 days), and for cefazolin 2 days (range 1-3 days) (1). Similarly, a study in hospitalized patients during a CDAD epidemic found a significantly increased risk of CDAD among patients who received fluoroquinolones for only 1-3 days (hazard ratio 2.4) with a 95% confidence interval (1.6-3.6) that overlapped 4-6 days and ≥ 7 days treatment groups (2). Yet another study found no significant difference in the risk of CDAD between those on antibiotic for < 4 days vs 4-7 days of antibiotics (3). CDAD following a single dose of cefazolin has also been reported (4).
Of interest, laboratory studies in mice have shown a profound alteration of intestinal microbiota following a single dose of clindamycin, resulting in increased susceptibility to C. difficile colitis (5).
So although duration of antibiotic therapy is an important factor in CDAD (3, 6) and we should minimize the duration of antibiotic therapy whenever possible, not starting antibiotics in the absence of clear indication is even better!

References
1. Manian FA, Aradhyula S, Greisnauer S, et al. Is it Clostridium difficile infection or something else? A case-control study of 352 hospitalized patients with new-onset diarrhea. S Med J 2007;100:782-786. https://www.ncbi.nlm.nih.gov/pubmed/17713303
2. Pepin J, Saheb N, Coulombe MA, et al. Emergence of fluoroquinolones as the predominant risk factor for Clostridium difficile-associated diarrhea: a cohort study during an epidemic in Quebec. Clin Infect Dis 2005;41:1254-60. https://www.ncbi.nlm.nih.gov/pubmed/16206099
3. Stevens V, Dumyati G, Fine LS, et al. Cumulative antibiotic exposures over time and the risk of Clostridium difficile infection. Clin Infect Dis 2011;53:42-48. https://www.ncbi.nlm.nih.gov/pubmed/21653301
4. Mcneeley SG, Anderson GD, Sibai BM. Clostridium difficile colitis associated with single dose cefazolin prophylaxis. Ob Gynecol 1985;66:737-8. https://www.ncbi.nlm.nih.gov/pubmed/4058831
5. Buffie CG, Jarchum I, Equinda M, et al. Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect Immun 2011;80: 62-73. https://www.ncbi.nlm.nih.gov/pubmed/22006564
6. Chalmers JD, Akram AR, Sinanayagam A, et al. Risk factors for Clostridium difficile infection in hospitalized patients with community-acquired pneumonia. J Infect 2016;73:45-53. https://www.ncbi.nlm.nih.gov/pubmed/27105657

Disclosure: The contributor of this post was a coinvestigator of a cited study (ref. 1).

If you liked this post, sign up under menu and get future pearls straight into your mailbox!

Is my hospitalized patient with possible pneumonia at risk of Clostridium difficile-associated disease after only 1-3 days of empiric antibiotic therapy?

My patient with cirrhosis now has an upper gastrointestinal bleed (UGIB) with hepatic encephalopathy (HE). What’s the connection between UGIB and HE?

Hepatic encephalopathy (HE) may be precipitated by a variety of factors including infection, hypovolemia, electrolyte imbalance (eg, hyponatremia, hypokalemia), metabolic alkalosis, sedatives, and of course UGIB. 1-3

Ammonia is often considered to play a central role in the the pathogenesis of HE, particularly when associated with UGIB. The ammoniagenic potential of UGIB is primarily attributed to the presence of hemoglobin protein in the intestinal tract. One-half of the ammoniagenesis originates from amino acid metabolism (mainly glutamine) in the mucosa of the small bowel, while the other half is due to the splitting of urea by the resident bacteria in the colon (eg, Proteus spp., Enterobacteriaceae, and anerobes).1,2

A large protein load in the GI tract, as occurs in UGIB, may result in hyperammonemia in patients with cirrhosis due to the limited capacity of the liver to convert ammonia to urea through the urea cycle as well as by the shunting of blood around hepatic sinusoids. Recent studies, however, also implicate the kidneys as an important source of ammonia in this setting, further compounding HE.3

It’s important to stress that ammonia is not likely to be the only mediator of HE. Enhanced production of cytokines due to infection or other inflammatory states, neurosteroids, endogenous benzodiazepines, and other bacterial byproducts may also play an important role in precipitating HE.2,4-6  So stay tuned!

Bonus pearl: Did you know that proinflammatory cytokines tumor necrosis factor-alpha and inerleukin-6 increase ammonia permeability across central nervous system-derived endothelial cells? 7

 

References

  1. Olde Damink SWM, Jalan R, Deutz NEP, et al. The kidney plays a major role in the hyperammonemia seen after simulated or actual GI bleeding in patients with cirrhosis. Hepatology 2003;37:1277-85.
  2. Frederick RT. Current concepts in the pathophysiology and management of hepatic encephalopathy. Gastroenterol Hepatol 2011;7:222-233.
  3. Tapper EB, Jiang ZG, Patwardhan VR. Refining the ammonia hypothesis: a physiology-driven approach to the treatment of hepatic encephalopathy. Mayo Clin Proc 2015;90:646-58.
  4. Shawcross DL, Davies NA, Williams R, et al. Systemic inflammatory response exacerbates the neuropsychological effects of induced hyperammonemia in cirrhosis. J Hepatol 2004;40:247-254.
  5. Shawcross DL, Sharifi Y, Canavan JB, et al. Infection and systemic inflammation, not ammonia, are associated with grade ¾ hepatic encephalopathy, but not mortality in controls. J Hepatol 2011;54:640-49.
  6. Shawcross D, Jalan R. The pathophysiologic basis of hepatic encephalopathy: central role for ammonia and inflammation.Cell Mol Life Sci 2005;62:2295-2304.
  7. Duchini A, Govindarajan S, Santucci M, et al. Effects of tumor necrosis factor-alpha and interleukin-6 on fluid-phase permeability and ammonia diffusion in CNS-derived endothelial cells. J Investig Med 1996;44:474-82.

If you liked this pearl, sign up under menu and receive future pearls straight into your mailbox!

My patient with cirrhosis now has an upper gastrointestinal bleed (UGIB) with hepatic encephalopathy (HE). What’s the connection between UGIB and HE?

My previously healthy patient is admitted with a multi-drug resistant E. coli urinary tract infection. Could her urinary tract infection (UTI) be foodborne?

Yes! Although foodborne infections are often thought to cause infections limited to the GI tract, an increasing number of studies have linked foodborne E.coli to extraintestinal infections in humans, including UTIs.1

Supportive data include frequent genetic similarly between antimicrobial-resistant E. coli from humans and poultry-associated E. coli. 2 In fact, antimicrobial-resistant E. coli isolates from humans may be  genetically more similar to poultry isolates than susceptible commensal E. coli strains in the human GI tract.3

A U.S. study found that 14% of chicken meat products were contaminated with E. coli strains capable of causing extraintestinal disease, 1/3 of which were mutli-drug resistant.4  Another study found that 94% of retail chicken meat samples contained E. coli with ESBL-genes,  of which nearly 40% contained isolates present in humans.5

Among women, UTI caused by antimicrobial-resistant extraintestinal pathogenic E. coli has been linked to high levels of self-reported chicken consumption.6

The plausibility of foodborne transmission of antimicrobial-resistant E. coli to humans is further supported by the finding that drug resistant E coli from chicken carcasses widely contaminate the kitchen during meal preparation and can appear in the intestinal tract of those who prepare such food.2

Bonus Pearl: Did you know that women with multi-drug resistant E. coli UTI are 3.7 times more likely to report frequent consumption of chicken? 6

References

  1. Manges AR. Escherichia coli and urinary tract infections: the role of poultry-meat. Clin Microbiol Infect 2016;22:122-29. https://www.ncbi.nlm.nih.gov/pubmed/26679924
  2. Manges AR, Johnson JR. Reservoirs of extraintestinal pathogenic Escherichia coli. Microbiol Spectrum 2012;3(5):UTI-0006-2012. https://www.ncbi.nlm.nih.gov/pubmed/26542041
  3. Johnson JR, Menard M, Johsnton B, et al. Epidemic clonal groups of Escherichia coli as a cause of antimicrobial-resistant urinary tract infections in Canada, 2002 to 2004. Antimicrob Agents Chemother 53;2733-2739. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2704706/
  4. Johnson JR, Porter SB, Johnston B, et al. Extraintestinal pathogenic and antimicrobial-resistant Escherichia coli, including sequence type 131 (ST131) from retail chicken breasts in the United States in 2013. Apppl Environ Microbiol 83:e02956-16. https://www.ncbi.nlm.nih.gov/pubmed/28062464
  5. Leverstein-van Hall MA, Dierikx CM, Stuart JC, et al. Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clin Microbiol Infect 2011;17:873-880. https://www.ncbi.nlm.nih.gov/pubmed/21463397
  6. Manges AR, Smith SP, Lau BJ, et al. Retail meat consumption and the acquisition of antimicrobial resistant Escherichia coli causing urinary tract infections: a case-control study. Foodborne Path Dis 4:419-431. https://www.ncbi.nlm.nih.gov/pubmed/18041952

If you liked this pearl, sign up under menu and receive future pearls right into your mailbox!

My previously healthy patient is admitted with a multi-drug resistant E. coli urinary tract infection. Could her urinary tract infection (UTI) be foodborne?