How does older people’s immune system place them at high risk of sepsis and death?

Increased risk of sepsis and death from infectious causes among the elderly is a well-known phenomenon—particularly as witnessed in the Covid-19 era— and is in part due to 2 major age-related alterations of their immune system: 1. Defective T and B cell functions in response to acute infections; and 2. Once infection sets in, inadequate control of sepsis-induced pro-inflammatory response and its attendant procoagulant state. Interestingly, the essential elements of the innate immunity (eg, neutrophils, dendritic cells, complements) are generally spared from the effects of aging.1,2

Increased susceptibility of the elderly to acute infections is in part caused by poorer T helper cell function and suboptimal B cell humoral response to neoantigens. Despite this, serum levels of pro-inflammatory cytokines such as IL-1, IL-6,TNF-alpha, and IFN-gamma are intact.  In fact, production of IL-6 and its duration of response is actually increased in the elderly.1,2

Poor control of the inflammatory state due to sepsis in older patients may be related to the difficulty in clearing a pathogen or dysfunction in the signaling by counter-regulatory cytokines, such as IL-10.2 Either way, unchecked inflammatory response is deleterious to the patient and is associated with increased risk of thrombosis and thromboembolism, multiorgan system failure, septic shock and death. 

Bonus Pearl: Did you know that even in the absence of infection, older people are more prone to thrombosis and thromboembolism , in part related to elevated plasma levels of fibrinogen, as well as factor VII, VIII, and IX, among others?2,3  

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 References

  1. Ticinesi A, Lauretani F, Nouvenne A, et al. C-reactive protein (CRP) measurement in geriatric patients hospitalized for acute infection. Eur J Intern Med 2017;37:7-12. https://pubmed.ncbi.nlm.nih.gov/27594414/
  2. Opal SM, Girard TD, Ely EW. The immunopathogenesis of sepsis in elderly patients. Clin Infect Dis 2005;41: (Suppl 7) S504-12. https://pubmed.ncbi.nlm.nih.gov/16237654/
  3. Mari D, Coppola R, Provenzano R. Hemostasis factors and aging. Experimental Gerontology 2008;43:66-73. https://www.sciencedirect.com/science/article/abs/pii/S0531556507001404?via%3Dihub

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

 

How does older people’s immune system place them at high risk of sepsis and death?

Should I consider acute acalculous cholecystitis in my elderly ambulatory patient admitted with right upper quadrant pain?

Short answer: Yes! Although we usually associate acute acalculous cholecystitis (AAC) with critically ill patients (eg, with sepsis, trauma, shock, major burns) in ICUs, AAC is not as rare as we might think in ambulatory patients. In fact, a 7 year study of AAC involving multiple centers reported that AAC among outpatients was increasing in prevalence and accounted for 77% of all cases (1)!

 
Although the pathophysiology of ACC is not fully understood, bile stasis and ischemia of the gallbladder either due to microvascular or macrovascular pathology have been implicated as potential causes (2). One study found that 72% of outpatients who developed ACC had atherosclerotic disease associated with hypertension, coronary, peripheral or cerebral vascular disease, diabetes or congestive heart failure (1). Interestingly, in contrast to calculous cholecystitis, “multiple arterial occlusions” have been observed on pathological examination of the gallbladder in at least some patients with ACC and accordingly a name change to “acute ischemic cholecystitis” has been proposed (3).

 
AAC can also complicate acute mesenteric ischemia and may herald critical ischemia and mesenteric infarction (3). The fact that cystic artery is a terminal branch artery probably doesn’t help and leaves the gallbladder more vulnerable to ischemia when arterial blood flow is compromised irrespective of the cause (4).

 
Of course, besides vascular ischemia there are numerous other causes of ACC, including infectious (eg, viral hepatitis, cytomegalovirus, Epstein-Barr virus, Salmonella, brucellosis, malaria, Rickettsia and enteroviruses), as well as many non-infectious causes such as vasculitides and, more recently, check-point inhibitor toxicity (1,5-8).

 
Bonus Pearl: Did you know that in contrast to cholecystitis associated with gallstones (where females and 4th and 5th decade age groups predominate), ACC in ambulatory patients is generally more common among males and older age groups (mean age 65 y) (1)?

 

If you liked this post, download the app and sign up under MENU to catch future pearls straight into your inbox, all for free! 

 

References
1. Savoca PE, Longo WE, Zucker KA, et al. The increasing prevalence of acalculous cholecystitis in outpatients: Result of a 7-year study. Ann Surg 1990;211: 433-37. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1358029/pdf/annsurg00170-0061.pdf
2. Huffman JL, Schenker S. Acute acalculous cholecystitis: A review. Clin Gastroenterol Hepatol 2010;8:15-22. https://www.cghjournal.org/article/S1542-3565(09)00880-5/pdf
3. Hakala T, Nuutinene PJO, Ruokonen ET, et al. Microangiopathy in acute acalculous cholecystitis Br J Surg 1997;84:1249-52. https://bjssjournals.onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-2168.1997.02775.x?sid=nlm%3Apubmed
4. Melo R, Pedro LM, Silvestre L, et al. Acute acalculous cholecystitis as a rare manifestation of chronic mesenteric ischemia. A case report. Int J Surg Case Rep 2016;25:207-11. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4941110/
5. Aguilera-Alonso D, Median EVL, Del Rosal T, et al. Acalculous cholecystitis in a pediatric patient with Plasmodium falciparum infection: A case report and literature review. Ped Infect Dis J 2018;37: e43-e45. https://journals.lww.com/pidj/pages/articleviewer.aspx?year=2018&issue=02000&article=00020&type=Fulltext  
6. Kaya S, Eskazan AE, Ay N, et al. Acute acalculous cholecystitis due to viral hepatitis A. Case Rep Infect Dis 2013;Article ID 407182. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3784234/pdf/CRIM.ID2013-407182.pdf
7. Simoes AS, Marinhas A, Coelho P, et al. Acalculous acute cholecystitis during the course of an enteroviral infection. BMJ Case Rep 2013;12. https://casereports.bmj.com/content/12/4/e228306
8. Abu-Sbeih H, Tran CN, Ge PS, et al. Case series of cancer patients who developed cholecystitis related to immune checkpoint inhibitor treatment. J ImmunoTherapy of Cancer 2019;7:118. https://jitc.biomedcentral.com/articles/10.1186/s40425-019-0604-2

 

 

Should I consider acute acalculous cholecystitis in my elderly ambulatory patient admitted with right upper quadrant pain?

My elderly nursing home patient is admitted with recent poor oral intake, falls and oral temperatures of 99.1°-99.3° F(37.3°-37.4°C). Is she considered febrile at these temperatures?

Yes! Even though we often think of temperatures of 100.4°F (38° C) or greater as fever, older people often fail to mount an appropriate febrile response despite having a serious infection. 1

Infectious Diseases Society of America (IDSA) guideline on evaluation of fever in older adult residents of long-term care facilities has defined fever in this population as:2

  • Single oral temperature >100° F (>37.8° C) OR
  • Repeated oral temperatures >99° F (>37.2° C) OR
  • Rectal temperatures >99.5° F (>37.5° C) OR
  • Increase in temperature of >2° F (>1.1° C) over the baseline temperature

Even at these lower than traditional thresholds for defining fever, remember that many infected elderly patients may still lack fever. In a study involving bacteremic patients, nearly 40% of those 80 years of age or older did not have fever (defined as maximum temperature over 24 hrs 100° F [37.8°C] or greater).3  

So our patient meets the criteria for fever as suggested by IDSA guidelines and, particularly in light of her recent poor intake and falls, may need evaluation for a systemic source of infection.

Now that’s interesting! Did you know that blunted febrile response of the aged to infections may be related to the inability of cytokines (eg, IL-1) to reach the central nervous system?1

References 

  1. Norman DC. Fever in the elderly. Clin Infect Dis 2000;31:148-51. https://academic.oup.com/cid/article/31/1/148/318030
  2. High KP, Bradley SF, Gravenstein S, et al. Clinical practice guidelines for the evaluation of fever and infection in older adult residents of long-term care facilities: 2008 update by the Infectious Disease Society of America. Clin Infect Dis 2009;48:149-71. http://www.idsociety.org/uploadedFiles/IDSA/Guidelines-Patient_Care/PDF_Library/Fever%20and%20Long%20Term%20Care.pdf
  3. Manian FA. Fever, abnormal white blood cell count, neutrophilia, and elevated serum C-reactive protein in adult hospitalized patients with bacteremia. South Med J 2012;105;474-78. http://europepmc.org/abstract/med/22948327
My elderly nursing home patient is admitted with recent poor oral intake, falls and oral temperatures of 99.1°-99.3° F(37.3°-37.4°C). Is she considered febrile at these temperatures?