Why might hydroxychloroquine and azithromycin be effective against the novel Coronavirus SARS-CoV-2/Covid-19?

Repurposing of older drugs such as chloroquine or hydroxychloroquine (HC) and more recently, azithromycin (AZ), has received much attention recently in the treatment of Covid-19. Both HC and AZ have immune modulating and antiviral activity that may potentially be effective in our fight against Covid-19.

 
Chloroquine/HC: Chloroquine is an old drug used for its antimalarial activity as well as for its immune modulation and anti-inflammatory properties. It is active in mice against a variety of viruses, including some enteroviruses, Zika virus, and influenza A H5N1 (1). Both chloroquine and HC are active in vitro against Covid-19, though HC appears to be more active (2).

 
Azithromycin: A macrolide often used for treatment of bacterial respiratory tract infections but also with anti-inflammatory and antiviral activity. Azithromycin has been shown to augment interferon response in rhinovirus-infected bronchial epithelial cells as well as in an experimental mouse model of asthma exacerbation (3,4). It also has activity against Zika virus (5). As recently as 2016, some authors opined that macrolides may be useful in pandemic influenza characterized by excessive inflammatory cytokine production because of their anti-inflammatory and interferon-boosting potential (6).

 
March 2020 French clinical trial: A small non-randomized clinical trial involving 36 confirmed Covid-19 patients (mean age 45 y) reported that HC (200 mg 3x/day x 10 days) was associated with rapid viral clearance from nasopharynx, often within 3-6 days (7). The effect was even more pronounced when AZ (500 mg 1st day, followed by 250 mg daily x 4 days) was added in 6 patients.

It’s worth emphasizing that most subjects in this study were either asymptomatic (17%) or had mild disease with upper respiratory tract infection symptoms only (61%). Pneumonia was diagnosed in only 6 patients.  A significant number of patients in the treatment arm also dropped out of the study, some due to ICU transfer.

 
Although such preliminary reports appear promising, the proof of the efficacy and safety of HC and/or AZ in the treatment of Covid-19 awaits larger properly designed clinical studies. Stay tuned!

 

 

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 

References
1. Touret F, de Lamballerie X. Of chloroquine and COVID-19. Antiviral Research 2020;177. 104762. https://www.ncbi.nlm.nih.gov/pubmed/32147496
2. Yao X, Ye F, Zhang M, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respirartory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 2020, March 9. https://www.ncbi.nlm.nih.gov/pubmed/32150618
3. Menzel M, Akbarshai H, Bjermer L, et al. Azithromycin induces anti-viral effects in cultured bronchial epithelial cells from COPD patients. Scientific Reports 2016;6:28698. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4923851/
4. Menzel M, Akbarshai H, Uller L. Azithromycin exhibits interferon-inducing properties in an experimental mouse model of asthma exacerbation. Eur Resp J 2015;46:PA5095. https://erj.ersjournas.com/content/46/suppl_59/PA5095
5. Retallack H, Di Lullo E, Knopp AC, et al. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proc Nat Acad Sci USA 2016;113:14408-13. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5167169/
6. Porter JD, Watson J, Roberts LR, et al. Identification of novel macrolides with antibacterial, anti-inflammatory and type I and III-IFN-augmenting activity in airway epithelium. J Antimicrob Chemother 2016;71:2767-81. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031920/
7. Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19:results of an open-label non-randomized clinical trial. International Journal of Antimicrobial Agents—In Press 17 March 2020-DOI: 10.1016/j.ijantimicag.2020.105949 . https://www.sciencedirect.com/science/article/pii/S0924857920300996

 

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

Why might hydroxychloroquine and azithromycin be effective against the novel Coronavirus SARS-CoV-2/Covid-19?

What findings should I look for in the chest imaging of my patients with the novel Coronavirus disease/Covid-19?

Chest imaging is often obtained to evaluate for pneumonia and progressive lung injury due to Covid-19. Given the concerns over healthcare worker exposure and environmental contamination, radiographic imaging should be minimized and obtained only when clinically indicated (1).

 
Routine chest radiograph: In a study involving over 1000 hospitalized patients with Covid-19, chest Xray abnormalities on admission were observed in about half of patients with nonsevere disease and three-quarters of those with severe disease (2). Many infiltrates are bilateral, patchy and peripheral in distribution (2,3).

 
Chest CT (without IV contrast):  CT abnormalities on admission have been observed in 84% of patients with nonsevere and 94% of patients with severe disease (2). Ground glass opacities (GGOs) and consolidation have been reported in the majority of patients. Infiltrates are often bilateral, peripheral, and posterior in distribution ( 2-5).

Compared to other causes of pneumonia, the most discriminating features of Covid-19 pneumonia on CT include peripheral distribution of infiltrates (80% vs 57%) and GGOs (91% vs 68%) (5).

CT findings are time dependent. Early during the course of infection, peripheral focal or bilateral multifocal GGOs are frequently observed, later giving rise to “crazy paving” and consolidation with occasional “reverse halo sign” as the disease progresses (see Bonus Pearl below), peaking around 9-13 days (6,7) . Pleural effusion and lymphadenopathy are uncommon (5,7).

 
Point of care ultrasound (POCUS): This relative newcomer offers a potentially useful and rapid means of evaluating for pneumonia or lung injury in Covid-19 and may be more sensitive than chest Xray. Its findings are not specific for Covid-19 lung pathology, however. In a preliminary report involving 12 patients with Covid-19 pneumonia (without ARDS) who underwent POCUS, a diffuse B-line pattern with spared areas was seen in all patients (8,9). Strict adherence to proper isolation precautions and decontamination of the ultrasound probe are essential.

 

Bonus Pearl: “Crazy paving” pattern on CT refers to GGOs with superimposed interlobular septal thickening and intralobular septal thickening, while “reversed halo sign” is a central GGO surrounded by denser consolidation of crescentic shape ring at least 2 mm in thickness (reference 7 has nice photos).

 

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 

References
1. ACR recommendations for the use of chest radiography and computed tomography (CT) for suspected COVID-19 infection. March 19, 2020. https://www.acr.org/Advocacy-and-Economics/ACR-Position-Statements/Recommendations-for-Chest-Radiography-and-CT-for-Suspected-COVID19-Infection
2. Guan WJ, Zheng-yi N, Hu Y, et al. Clinical characteristics of Coronavirus disease 2019 in China. N Engl J Med 2020; February 28. https://www.nejm.org/doi/full/10.1056/NEJMoa2002032
3. Ai T, Yang Z, Hou H, et al. Correlation of chest CT and RT-PCR testing in Coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases. Radiology 2020. https://pubs.rsna.org/doi/10.1148/radiol.2020200642
4. Yoon SH, Lee KH, Kim JY, et al. Chest radiographic and CT findings of the 2019 Novel Coronavirus disease (COVID-19): Analysis of nine patients treated in Korea. Korean J Radiol 2020;21 :494-500. https://www.kjronline.org/Synapse/Data/PDFData/0068KJR/kjr-21-494.pdf
5. Bai HX, Hsieh B, Xiong Z, et al. Performance of radiologists in differentiating COVID-19 from viral pneumonia on chest CT. https://pubs.rsna.org/doi/10.1148/radiol.2020200823
6. Kanne JP, Little BP, Chung JH, et al. Essentials for radiologists on COVID-19: An update—Radiology scientific expert panel. Radiology 2020; February 27. https://pubs.rsna.org/doi/10.1148/radiol.2020200527

7. Bernheim A, Mei X, Huang M, et al. Chest CT findings in Coronavirus Disease-19 (COVID-19):Relations to duration of infection. Radiology 2020 Feb 20:200463.  https://pubs.rsna.org/doi/pdf/10.1148/radiol.2020200463
8. Poggiali E, Dacrema A, Bastoni D, et al. Can lung US help critical care clinicians in the early diagnosis of novel Coronavirus (COVID-19) pneumonia? Radiology 2020; https://www.ncbi.nlm.nih.gov/pubmed/32167853

9. Peng QY, Wang XT, Zhang LN, et al. Findings of lung ultrasonography of novel Coronavirus pneumonia during the 2019-2020 epidemic. Intensive Care Med 2020. https://doi.org/10.1007/s00134-020-05996.

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

What findings should I look for in the chest imaging of my patients with the novel Coronavirus disease/Covid-19?

How “sensitive” is the PCR in diagnosing coronavirus/Covid-19?

A definite diagnosis of Covid-19 requires viral testing, usually through PCR performed on upper (nasopharyngeal or oropharyngeal) or lower respiratory samples (sputum, bronchoalveolar lavage [BAL] fluid). Rates of positive PCR may be affected by stage of the disease and/or its severity.
Nasopharyngeal sample: This seems to be the most practical and readily available means of confirming Covid-19 diagnosis, with positive rates of ~75% during the first 2 weeks of illness in patients considered to have severe disease. For patients with mild Covid-19, a positive PCR rate of 72% has been reported during the 1st week, dropping to 54% during the 2nd week (1).
Oropharyngeal sample: Lower positive PCR rates have been observed with throat swabs, as low as ~30% in mild Covid-19 during the 2nd week of the illness and ~60% in severe disease during the first week of illness (2).
Sputum: Sputum may have the highest positive rates ranging from ~75% in mild disease during the second week of illness to ~90% during the 1st week of severe disease. The problem with sputum sampling is that less than one-third of patients with Covid-19 can provide a sample given the usually dry nature of their cough (1,4).
BAL fluid: In a limited number of patients with severe disease who had bronchoalveolar lavage sampling during the 2nd week of illness, 3 (25%) of 12 patients with positive PCR on BAL had negative upper respiratory samples (1). So in severe disease, the virus definitely prefers to replicate in the lower respiratory tract.
Potential explanations for a negative PCR include low viral titers and specimen handling. So, in patients suspected of having Covid-19 based on clinical/laboratory/radiograph grounds, a negative upper respiratory sample, particularly oropharyngeal source, should not rule out this disease.

 

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 

References

1. Yang Y, Yang M, Shen C, et al. Evaluating the accuracy of different respiratory specimens in the laboratory diagnosis and monitoring the viral shedding of 2019-nCoV infections. MedRxiv. 2020. DOI: http://doi.org/10.1101/2020.02.11.20021493
2. Ai T, Yang Z, Hou H, et al. Correlation of chest CT and RT-PCR testing in Coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases. Radiology 2020. https://pubs.rsna.org/doi/10.1148/radiol.2020200642
3. Bai HX, Hsieh B, Xiong Z, et al. Performance of radiologists in differentiaging COVID-19 from viral pneumonia on chest CT. Radiology 2020. https://pubs.rsna.org/doi/10.1148/radiol.2020200823 
4. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)30183-5/fulltext
Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

How “sensitive” is the PCR in diagnosing coronavirus/Covid-19?

Are NSAIDS contraindicated in patients with 2019 novel Coronavirus infection (Covid-19)?

Despite recent internet reports of the association of non-steroidal anti-inflammatory drugs (NSAIDs) with worsening symptoms among patients with Covid-19 (1), firm clinical evidence to support such claims is currently lacking. However, there are some theoretical reasons why it may still be best to avoid NSAIDs in this condition due to their potential adverse impact on the innate and adaptive immune responses as well as their antipyretic properties (2-9).

 
Blunting of the innate immune response: Certain NSAIDs (eg, ibuprofen, naproxen and celecoxib) inhibit cyclooxygenase enzyme-2 (COX-2) and impair production of several pro-inflammatory cytokines important in fighting infections, such as tumor necrosis factor, interleukin 1 and 6, as well as interferon, an antiviral cytokine (2,6,8). COX-2 has been shown to be important in controlling viral replication in influenza (4). Ibuprofen has been associated with inhibitory effects on a variety of polymorphonuclear functions, including chemotaxis (2).

 
Impact on adaptive immune response: COX-2 inhibition may be associated with impaired neutralizing antibody production (3,4,8). Potential mechanisms include modulation of cytokine expression, nitric-oxide production, and antigen processing/presentation and T lymphocyte activation (3,8).

 
Antipyretic effect: NSAIDs are often given for treatment of fever which is an evolutionary host response to infection. A meta-analysis of animal studies evaluating the impact of antipyretics (including aspirin, NSAIDs, and acetaminophen) in influenza found lower survival in animals treated with antipyretics (9). Longer duration of viral shedding has also been associated with the use of aspirin or acetaminophen in rhinovirus infection (9).

 
Formal epidemiologic and experimental studies are sorely needed to evaluate the safety of NSAIDS in Covid-19.  

 

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 

 

References
1. Kolata G. Is ibuprofen really risky for Coronavirus patients? NY Times, March 17, 2020. https://www.nytimes.com/2020/03/17/health/coronavirus-ibuprofen.html
2. Graham NMH, Burrell CJ, Douglas RM, et al. Adverse effects of aspirin, acetaminophen and ibuprofen on immune function, viral shedding, and clinical status in rhinovirus-infected volunteers. J Infect Dis 1990;162:1277-1282. https://academic.oup.com/jid/article/162/6/1277/918184
3. Culbreth MJ, Biryunkov S, Shoe JL, et al. The use of analgesics during vaccination with a live attenuated Yersinia pestis vaccine alters the resulting immune response in mice. Vaccines 2019;7, 205; doi:10.3390/vaccines7040205 https://www.mdpi.com/2076-393X/7/4/205
4. Ramos I, Fernandez-Sesma A. Modulating the innate immune response to influenza A virus:potential therapeutic use of anti-inflammatory drugs. Frontiers in Immunology. July 2015. Volume 6. Article 361. https://www.ncbi.nlm.nih.gov/pubmed/26257731
5. Falup-Pecurariu O, Man SC, Neamtu ML, et al. Effects of prophylactic ibuprofen and paracetamol administration on the immunogenicity and reactogenicity of the 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugated vaccine(PHID-CV) co-administered with DTPa-combined vaccines in children:An open-label, randomized, controlled, non-inferiority trial. Human Vaccines & Immunotherapeutics 2017;13: 649-660. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5360152/
6. Housby JN, Cahill CM, Chu B, et al. Non-steroidal anti-inflammatory drugs inhibit the expression of cytokines and induce HSP70 in human monocytes. Cytokine 1999;11:347-58. https://www.ncbi.nlm.nih.gov/pubmed/30186359
7. Agarwal D, Schmader KE, Kossenkov AV, et al. Immune response to influenza vaccination in the elderly is altered by chronic medication use. Immunity & Ageing 2018;15:19. https://www.ncbi.nlm.nih.gov/pubmed/30186359
8. Bancos S, Bernard MP, Topham DJ, et al. Ibuprofen and other widely used non-steroidal anti-inflammatory drugs inhibit antibody production in human cells. Cell Immunol 2009;258:18-28. https://www.ncbi.nlm.nih.gov/pubmed/19345936
9. Eyers S, Weatherall M, Shirtcliffe P, et al. The effect on mortality of antipyretics in the treatment of influenza infection: systematic review and meta-analysis. J R Soc Med 2010;103:403-11. https://www.ncbi.nlm.nih.gov/pubmed/20929891

 

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

Are NSAIDS contraindicated in patients with 2019 novel Coronavirus infection (Covid-19)?

Should I continue or discontinue angiotensin converting enzyme inhibitors (ACEIs) or angiotensin receptor blockers (ARBs) in my patients with possible Coronavirus/Covid-19 infection?

The original reports of an association between hypertension and increased risk of mortality in hospitalized patients with Covid-19 infection raised concern over the potential deleterious role of ACEIs or ARBs in such patients.1-4 However, as stated by a joint statement of several cardiology societies, including the American Heart Association, American College of Cardiology and the European Society of Cardiology on March 13, 2020, there is no clinical or scientific evidence that ACEI or ARBS should be routinely discontinued in patients with Covid-19 infection.5

In fact, some have argued for the opposite ie, consideration for the use of ARBs, such as losartan (an angiotensin receptor 1 [AT1R] antagonist), in patients with Covid-19.6,7  Although it is true that Covid-19 appears to use ACE2 as a binding site to infect cells (just as in SARS) and that ACE2 may be upregulated in patients on chronic ACEI or ARBs,8,9 ACE2 may also potentially protect against severe lung injury associated with infections.10,11  

Two complementary mechanisms have been posited for the potential protective effect of ARBs in Covid-19 infection-related lung injury: 1. Blocking the excessive AT1R activation caused by the viral infection; and 2. Upregulation of ACE2, thereby reducing production of angiotensin II and increasing the production of the vasodilator angiotensin 1-7.7

In the absence of proper clinical studies, it is premature, however, to recommend use of losartan or other AT1R antagonists as a means of reducing the likelihood of ARDS in patients with Covid-19 at this time.

Bonus Pearl: Did you know that ARDS is a major cause of death in Covid-19 infection?12

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020, March 6. https://www.nejm.org/doi/pdf/10.1056/NEJMoa2002032?articleTools=true
  2. O’Mara GJ. Could ACE inhibitors, and particularly ARBs, increase susceptibility to COVID-19 infection? BMJ 2020;368:m406 ARTICLE
  3. Sommerstein R, Grani C. Preventing a Covid-19 pandemic: ACE inhibitors as a potential risk factor for fatal Covid-19. BMJ2020;368:m810. https://www.bmj.com/content/368/bmj.m810/rr-2
  4. Li X, Geng M, Peng Y, et al. Molecular immune pathogenesis and diagnosis of COVID-19. Journal of Pharmaceutical Analysis 2020, doi htps://doi.org/10.106/j.jpha.2020.03.001. https://www.sciencedirect.com/science/article/pii/S2095177920302045
  5. Cardiology societies recommend patients taking ACE inhibitors, ARBs who contract COVID-19 should continue treatment. March 17, 2020. https://www.healio.com/cardiology/vascular-medicine/news/online/%7Bfe7f0842-aecb-417b-9ecf-3fe7e0ddd991%7D/cardiology-societies-recommend-patients-taking-ace-inhibitors-arbs-who-contract-covid-19-should-continue-treatment
  6. Gurwitz D. Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics. Drug Dev Res 2020;1-4. https://www.ncbi.nlm.nih.gov/pubmed/32129518/
  7. Phadke M, Saunik S. Response to the emerging novel coronavirus outbreak. BMJ 2020;368:m406. https://www.bmj.com/content/368/bmj.m406/rr-2
  8. Zheng YY, Ma YT, Zhang JY, et al. COVID-19 and the cardiovascular system. Nature Reviews/Cardiology 2020; https://doi.org/10.1038/s41569-020-0360-5 .
  9. Ferrario CM, Jessup J, Chappell MC, et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation 2005;111:2605-2610. https://www.ahajournals.org/doi/full/10.1161/circulationaha.104.510461
  10. Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nature Medicine 2005;11:875-79. Doi:10.1038/nm1267 https://www.nature.com/articles/nm1267?v=1
  11. Tikellis C, Thomas MC. Angiotensin-converting enzyme 2 (ACE2) is a key modulator of the renin angiotensin system in health and disease. International Journal of Peptides. Volume 2012, Article ID 256294, 8 pages. Doi:10.1155/2012/256294. https://research.monash.edu/en/publications/angiotensin-converting-enzyme-2-ace2-is-a-key-modulator-of-the-re

12 . Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020. https://doi.org/10.1016/S0140-6736(20)30183-5

 

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

Should I continue or discontinue angiotensin converting enzyme inhibitors (ACEIs) or angiotensin receptor blockers (ARBs) in my patients with possible Coronavirus/Covid-19 infection?

What existing drugs are currently being evaluated or repurposed for treatment of Coronavirus (Covid-19) infection?

There are currently no drugs specifically approved for treatment of Covid-19 infections. However, there are legions of therapies that are being considered, tried, and/or evaluated in clinical trials. Many experts believe a combination of drugs may be necessary for optimal therapy. Here is my select list of potentially promising drugs from gleaning the literature and online resources to date.1-16

  • Remdisivir: A broad spectrum investigational nucleoside analogue, originally developed to treat a variety of viruses, including Ebola, SARS and MERS. Active in vitro against Covid-19. Favorable results have been reported in some cases, including the first reported patient in the U.S.
  • Chloroquine: An old drug used for its antimalarial activity as well as for its immune modulation and anti-inflammatory properties. Has also been found to be active in mice against a variety of viruses, including certain enteroviruses, Zika virus, influenza A H5N1.  Active in vitro against Covid-19, though hydroxychloroquine may be more effective. Evidence for its efficacy in treating acute viral infections in humans is currently lacking.
  • Lopinavir/ritonavir: Protease inhibitor combo used in HIV infection with possibly some benefit in the treatment of SARS. Recent study showed no significant efficacy in severe Covid-19 disease. 
  • Interferon-alpha: An antiviral cytokine used against hepatitis B and C viruses. May be more effective for prophylaxis than post-exposure, based on experimental animal studies involving SARS.
  • Ribavirin: Another nucleoside analogue approved for hepatitis C (in combination with other drugs) and respiratory syncytial virus (RSV) infections but also evaluated in SARS and MERS. Has been reported to be active in vitro against Covid-19.
  • Sofosbuvir: Inhibits RNA-dependent RNA polymerase. Approved for treatment of hepatitis C, but also with in vitro activity against Covid-19.
  • Tocilizumab: Anti-interleukin-6 monoclonal antibody used in rheumatoid and giant cell arthritis. Theoretically, may mitigate cytokine storm observed in some patients during the later stages of Covid-19 disease.

Of course, there are many more drugs some of which would not be expected to be effective against Covid-19, based on what we so far know this virus. These include darunavir/cobicistat, oseltamivir, immunoglobulins, arbidol (an antiviral used in Russia and China vs influenza), angiotensin receptor blockers, stem cell therapy, convalescent plasma, and traditional Chinese medicine.

Remember corticosteroids are currently not recommended in the absence of other indications for their use (see related PEARL).

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. US National Library of Medicine. https://clinicaltrials.gov/ct2/results?cond=2019nCoV&term=&cntry=&state=&city=&dist
  2. Li Guangdi, De Clercq E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nature Reviews Drug Discovery 2020; Feb 19, 2010. https://www.nature.com/articles/d41573-020-00016-0
  3. Harrison C. Coronavirus puts drug repurposing on the fast track. Nature Biotechnology 020, Feb 27. https://www.nature.com/articles/d41587-020-00003-1
  4. Velavan TP, Meyer CG. The COVID-19 epidemic. Tropical Medicine and International Health 2020;25:278-280. https://onlinelibrary.wiley.com/doi/full/10.1111/tmi.13383
  5. Elfiky AA. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sciences 2020;248. 11747. https://www.sciencedirect.com/science/article/pii/S0024320520302253
  6. Wang Y, Wang Y, Chen Y, et al. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J Med Virol 2020;March 5. https://www.ncbi.nlm.nih.gov/pubmed/32134116
  7. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2029 novel coronavirus in Wuhan, China. Lancet 2020;395:497-506. https://www.ncbi.nlm.nih.gov/pubmed/31986264
  8. Paules CI, Marston HD, Fauci AS. Coronavirus infections—More than just the common cold. JAMA 2020;323:707-78. https://jamanetwork.com/journals/jama/fullarticle/2759815
  9. Touret F, de Lamballerie X. Of chloroquine and COVID-19. Antiviral Research 2020;177. 104762. https://www.sciencedirect.com/science/article/pii/S0166354220301145
  10. Gurwitz D. Angiotensin receptor blockers as tentavie SARS-CoV-2 therapeutics. https://www.ncbi.nlm.nih.gov/pubmed/32129518/
  11. Wang M, Cao R, Zhang L, et al. Remdesivir and chlorquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research 2020;30:269-71. https://www.nature.com/articles/s41422-020-0282-0
  12. Roques P, Thiberville SD, Dupuis-Maguirara L, et al. Paradoxical effect of chloroquine treatment in enhancing Chikungunya virus infection. Viruses 2018;10, 268. https://www.ncbi.nlm.nih.gov/pubmed/29772762
  13. Young BE, Ong SWX, Kalimuddin S, et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA 2020;March 3. https://jamanetwork.com/journals/jama/fullarticle/2762688
  14. Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020; March 5. https://www.nejm.org/doi/full/10.1056/NEJMoa2001191
  15. Yao X, Ye F, Zhang M, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 2020. March 9. https://www.ncbi.nlm.nih.gov/pubmed?term=32150618
  16. Cao B, Wang Y, Wen D, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl M Med 2020, March18. DOI:10.1056/NEJMoa2001282. https://www.nejm.org/doi/full/10.1056/NEJMoa2001282

 

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

What existing drugs are currently being evaluated or repurposed for treatment of Coronavirus (Covid-19) infection?

Key clinical pearls in the medical management of hospitalized patients with coronavirus (Covid-19) infection

First, a shout-out to dedicated healthcare workers everywhere who have selflessly given of themselves to care for the sick during this pandemic. Thank you! Together, I know we will get through it!

Although our understanding of Covid-19 infection is far from complete, in the spirit of clarity and brevity of my posts on Pearls4Peers, here are some key points I have gleaned from review of existing literature and the CDC that may be useful as we care for our hospitalized patients with suspected or confirmed Covid-19 infection.

  • Isolation precautions.1 Per CDC, follow a combination of airborne (particularly when aerosol generating procedures is anticipated, including nebulizer treatment) and contact precaution protocols. Routinely use masks or respirators, such as N-95s (subject to local availability and policy) and eye protection. Don gowns (subject to local availability and policy) and gloves and adhere to strict hand hygiene practices.

 

  • Diagnostic tests1-9
    • Laboratory tests. Routine admission labs include CBC, electrolytes, coagulation panels and liver and renal tests. Other frequently reported labs include LDH, C-reactive protein (CRP) and procalcitonin. Testing for high sensitivity troponin I has also been performed in some patients, presumably due to concern over ischemic cardiac injury or myocarditis.2 Check other labs as clinically indicated.
    • Chest radiograph/CT chest. One or both have been obtained in virtually all reported cases with CT having higher sensitivity for detection of lung abnormalities.
    • EKG. Frequency of checking EKGs not reported in many published reports thought 1 study reported “acute cardiac injury” in some patients, based in part on EKG findings.4 Suspect we will be checking EKGs in many patients, particularly those who are older or are at risk of heart disease.
    • Point-of-care ultrasound (POCUS). This relatively new technology appears promising in Covid-19 infections, including in rapid assessment of the severity of pneumonia or ARDS at presentation and tracking the evolution of the disease. 9 Don’t forget to disinfect the probe between uses!

 

  • Treatment 1-8
    • Specific therapies are not currently available for treatment of Covid-19 infections, but studies are underway.
    • Supportive care includes IV fluids, 02 supplementation and nutrition, as needed. Plenty of emotional support for patients and their families will likely be needed during these times.
    • Antibiotics have been used in the majority of reported cases, either on admission or during hospitalization when superimposed bacterial pneumonia or sepsis could not be excluded.
      • Prescribe antibiotics against common community-acquired pneumonia (CAP) pathogens, including those associated with post-viral/influenza pneumonia such as Streptococcus pneumoniae (eg, ceftriaxone), and Staphylococcus aureus (eg, vancomycin or linezolid if MRSA is suspected) when concurrent CAP is suspected.
      • Prescribe antibiotics against common hospital-acquired pneumonia (HAP) (eg, vancomycin plus cefepime) when HAP is suspected.
    • Corticosteroids should be avoided because of the potential for prolonging viral replication, unless indicated for other reasons such as COPD exacerbation or septic shock. 1
    • Monitor for deterioration in clinical status even when your hospitalized patient has relatively minor symptoms. This is because progression to lower respiratory tract disease due to Covid-19 often develops during the 2nd week of illness (average 9 days).
    • ICU transfer may be necessary in up to 30% of hospitalized patients due to complications such as ARDS, secondary infections, and multi-organ failure.

 

Again, thank you for caring for the sick and be safe! Feel free to leave comments or questions.

 

 Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 

References

  1. CDC. Interim clinical guidance for management of patients with confirmed coronavirus disease (COVID-19). https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-patients.html
  2. Ruan Q, Yang K, Wang W, Jiang L, et al. Clinical predictors of mortality due to COVID-19 based on analysis of data of 150 patients with Wuhan, China. Intensive Care Med 2020. https://link.springer.com/article/10.1007/s00134-020-05991-x
  3. Holshue ML, BeBohlt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020;382:929-36. https://www.nejm.org/doi/full/10.1056/NEJMoa2001191
  4. Huang C, Wang Y, Li Xingwang, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497-506. https://www.thelancet.com/pdfs/journals/lancet/PIIS0140-6736(20)30183-5.pdf
  5. Young BE, Ong SWX, Kalimuddin S, et al. Epideomiologic features and clinical course of patients infected with SARS-CoV-2 Singapore. JAMA, March 3, 2020. Doi.10.1001/jama.2020.3204 https://www.ncbi.nlm.nih.gov/pubmed/32125362
  6. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical chacteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020;395:507-13. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)30211-7/fulltext
  7. Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl Med 2020, Feb 28, 2020. https://www.nejm.org/doi/full/10.1056/NEJMoa2002032
  8. Zhang J, Zhou L, Yang Y, et al. Therapeutic and triage strategies for 2019 novel coronavirus disease in fever clinics. Lancet 2020;8: e11-e12. https://www.thelancet.com/journals/lanres/article/PIIS2213-2600(20)30071-0/fulltext 9.
  9. Peng QY, Wang XT, Zhang LN, et al. Findings of lung ultrasonography of novel corona virus pneumonia during the 2019-2020 epidemic. Intensive Care Med 2020. https://doi.org/10.1007/s00134-020-05996-
Key clinical pearls in the medical management of hospitalized patients with coronavirus (Covid-19) infection

What’s the evidence that respiratory viruses, including Covid-19, can be transmitted by touching contaminated surfaces?

Although no published data specific to Covid-19 is yet available, transmission by contact with contaminated surfaces has been implicated in infections due to several respiratory viruses, such as other human coronaviruses and influenza viruses. 1,2

A 2020 review article involving 22 published studies found that human coronaviruses such as SARS, MERS or common cold coronaviruses (eg, HCoV-229E) can persist on inanimate surfaces (eg, metal, glass or plastic) for hours up to 9 days depending on the level of initial viral contamination.1  

A recent NEJM study reported Covid-19 persisting  for 72 h on plastic and 48 h on stainless steel (3). Shorter survival was observed on cardboard (24 h or less) and copper surface (4 h or less). Although data on transmissibility of coronaviruses from contaminated surfaces to hands is not currently available, at least in the case of influenza A, a contact time of 5 seconds may transfer 31.6% of the viral load to the hands.4

But hand contamination doesn’t necessarily stop there.  We constantly touch our faces, including nose, eyes, and mouth, all serving as potential entry points for the virus.   One study found that, on average, subjects touched their faces 23 times per hour, with nearly one-half of that time involving either the nose, eyes or mouth. 5 Another study reported touching one’s face on average 19 times in a 2-hour period (range 0-105 times!).

For these reasons, environmental decontamination and hand hygiene have been stressed as part of the ongoing strategies to limit Covid-19 spread.

The good news is that coronaviruses are efficiently inactivated by many of the commonly available disinfectants and antiseptics, including 62%-71% ethanol, 70% isopropyl alcohol, 1:50 dilution of household bleach, and 0.5% hydrogen peroxide. 1

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. Kampf G, Todt D, Pfaender S, et al. Persistence of coronavirus on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect 2020;104:246-51. https://www.ncbi.nlm.nih.gov/pubmed/32035997
  2. Otter JA, Donskey C, Yezli S, et al. Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: the possible role of dry surface contamination. J Hosp Infect 2016;92:235-250. https://www.ncbi.nlm.nih.gov/pubmed/26597631/
  3.  van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med 2020, March 17. https://www.nejm.org/doi/10.1056/NEJMc2004973
  4. Bean B, Moore BM, Sterner B, et al. Survival of influenza viruses on environmental surfaces. J Infect Dis 1982;146:47-51. https://www.ncbi.nlm.nih.gov/pubmed/6282993
  5. Kwok YL, Garlton J, McLaws ML. Face touching: a frequent habit that has implications for hand hygiene. Am J Infect Control 2015;43:112-4. https://www.ncbi.nlm.nih.gov/pubmed/25637115
  6. Elder NC, Sawyer W, Pallerla H, et al. Hand hygiene and face touching in family medicine offices: a Cincinnati Area Research and Improvement group (CARInG) Network Study. J Am Board Fam Med 2014;27:339-346. https://www.jabfm.org/content/27/3/339.long
What’s the evidence that respiratory viruses, including Covid-19, can be transmitted by touching contaminated surfaces?

Catch these selected key clinical pearls on coronavirus disease (Covid-19)!

Although the Covid-19 pandemic is continuing to evolve and our knowledge of its epidemiology and pathophysiology is still far from complete, you may find the following pearls based on published literature to date useful when discussing this disease with your colleagues or the public. 1-11

  • Age group: Primarily an adult disease. Children (< 15-year-old) account for only a minority of symptomatic patients (<1%); ~50% of patients are between 15-49 years of age with 15% in the ≥ 65 year group. 1
  • Incubation period: A bit longer than seasonal flu. Median 4.0 days (IQR 2.0-7.0 days); an upper range up to 24 days has also been reported. In contrast, for seasonal flu the median incubation period is shorter (median 2.0 days, 1.0-7.0 days. 1,4,11
  • Transmission: Contact, droplet, and possibly airborne. On average each person may transmit Covid-19 virus to 2-3 other persons (vs <2 people for seasonal flu). Unlike SARS or MERS, but more akin to the seasonal flu, asymptomatic persons may also be able to transmit the disease. 4,5,11
  • Comorbid conditions (eg, diabetes, hypertension, COPD…): Present in about 1/3 of reported patients. 1
  • Symptoms 1,5
    • ~80% of patients may be either asymptomatic or have mild disease
    • Fever may be absent in ~50% of patients on presentation but will eventually develop in ~90% of hospitalized patients
    • Cough (2/3 dry) is present in majority (~80%) of cases
    • Rhinorrhea is uncommon (<10%), in contrast to the seasonal influenza
    • GI symptoms (nausea/vomiting/diarrhea) are uncommon (<10%)
    • May take 9-12 days from onset of symptoms to severe disease
  • Labs 1
    • Lymphopenia is common (up to ~80%)
    • Abnormal liver function (AST and ALT) is found in about 1/3 of patients
    • C-reactive protein (CRP) is usually elevated (~80% of severe cases)
    • Procalcitonin is usually normal
  • Treatment: Supportive for now. Candidate drugs include remdesivir, lopinavir/ritonavir, chloroquine phosphate, ribavirin and several others.4
  • Mortality: Reported mortality among mostly symptomatic hospitalized cases is ~2.0% (0.9% without comorbidities, 5-10% in those with comorbidities, 50% among critically ill). Overall mortality rates will likely drop as more patients without symptoms or with mild disease are tested. In contrast, 2 other coronavirus diseases, SARS and MERS, have mortality rates of ~9.0% and 36.0%, respectively. 1,4,5

 

Bonus pearl: Did you know that, Covid-19-infected patients shed the virus in their nasopharyngeal secretions on the average for 12 days, some as long as 24 days?3

 

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. Guan W, Ni Z, Hu Y, et al. Clinical characteristics of Coronavirus disease 2019 in China. N Engl J Med 2020. First published Feb 28, 220, last updated March 6, 2020. https://www.nejm.org/doi/10.1056/NEJMoa2002032
  2. Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel Coronavirus in the United States. N Engl J Med 2020; 382:929-36. https://www.nejm.org/doi/full/10.1056/NEJMoa2001191
  3. Young BE, Ong SWX, Kalimuddin S, et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA. Doi:10.1001/jama.2020.3204. Published online March 3, 2020. https://jamanetwork.com/journals/jama/fullarticle/2762688
  4. Wang Y, Wang Y, Chen Y, et al. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J Med Virol 2020. Doi: 10.1002/jmv.25748. https://www.ncbi.nlm.nih.gov/pubmed/32134116
  5. Fauci AS, Lane HC, Redfield RR. Covid-19—Navigating the uncharted. N Eng J Med 2020. DOI:10.1056/NEJMe2002387. https://www.nejm.org/doi/full/10.1056/NEJMe2002387
  6. Del Rio C, Malani PN. 2019 novel coronavirus—important information for clinicians. JAMA 2020, Feb 5. https://www.ncbi.nlm.nih.gov/pubmed/32022836
  7. Lipsitch M, Swerdlow DL, Finelli L. Defining the epidemiology of Covid-19—studies needed. N Engl J Med 2020. Feb 19. DOI:10.1056/NEJMp2002125. https://www.ncbi.nlm.nih.gov/pubmed/32074416/
  8. Morens DM, Daszak P, Taubenberger JK. Escaping Pandora’s box—another novel coronavirus. N Eng J Med 2020. Feb 26. DOI:10.1056/NEJMp2002106. https://www.nejm.org/doi/full/10.1056/NEJMp2002106
  9. She J, Jiang J, Ye L, et al. 2019 novel coronavirus of pneumonia in Wuhan, China: merging attack and management strategies. Clin Trans Med 2020;9:19. https://clintransmed.springeropen.com/articles/10.1186/s40169-020-00271-z
  10. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395: 497-506. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)30183-5/fulltext
  11. Bai Y, Yao L, Wei T, et al. Presumed asymptomatic carrier transmission of COVID-19. JAMA 2020. Feb 21. https://jamanetwork.com/journals/jama/fullarticle/2762028
Catch these selected key clinical pearls on coronavirus disease (Covid-19)!

When should I consider a switch to oral antibiotics and discharge from hospital in my recently admitted elderly patient with community-acquired pneumonia (CAP)?

A frequently used validated set of clinical stability criteria in patients with CAP and supported by the 2019 ATS/IDSA CAP guidelines consists of a temperature ≤37.8 ᵒC (100.0 ᵒF) AND no more than 1 CAP-related sign of clinical instability as listed below: 1-3

  • Heart rate >100/min
  • Systolic blood pressure <90 mm Hg
  • Respiration rate >24 breaths/min
  • Arterial oxygen saturation <90% or Pa02<60 mm Hg (room air)

Using these criteria, the risk of clinical deterioration serious enough to necessitate transfer to an intensive care unit may be 1% or less, 1 while failure to achieve clinical stability within 5 days is associated with higher mortality and worse clinical outcome. 2 The median time to clinical stability (as defined) for CAP treatment is 3 days.1  

A 2016 randomized-controlled trial involving patients hospitalized with CAP found that implementation of above clinical stability criteria was associated with safe discontinuation of antibiotics after a minimum of 5 days of appropriate therapy.

Potential limitations of the above study include heavy use of quinolones (80%), underrepresentation of patients with severe CAP (Pneumonia Risk Index, PSI, V), and exclusion of nursing home residents, immunosuppressed patients, those with chest tube, or infection caused by less common organisms, such as Staphylococcus aureus or Pseudomonas aeruginosa.

Lack of clinical stability after 5 days of CAP treatment should prompt evaluation for complications of pneumonia (eg, empyema, lung abscess), infection due to  organisms resistant to selected antibiotics, or an alternative source of infection/inflammatory/poor response. 2

References

  1. Halm, EA, Fine MJ, Marrie TJ, et al. Time to clinical stability in patients hospitalized with community-acquired pneumonia: implications for practice guidelines. JAMA 1998;279:279:1452-57. https://reference.medscape.com/medline/abstract/9600479
  2. Metlay JP, Waterer GW, Long AC, et al. Diagnosis and treatment of adults with community-acquired pneumonia. Am J Respir Crit Care Med 2019;200:e45-e67. https://www.ncbi.nlm.nih.gov/pubmed/31573350
  3. Uranga A, Espana PP, Bilbao A, et al. Duration of antibiotic treatment in community-acquired pneumonia. A multicenter randomized clinical trial. JAMA Intern Med 2016;176:1257-65. https://www.ncbi.nlm.nih.gov/pubmed/27455166/
When should I consider a switch to oral antibiotics and discharge from hospital in my recently admitted elderly patient with community-acquired pneumonia (CAP)?