My patient with angina symptoms also complains of neck pain with left arm numbness. Could they be related?

Short answer, yes! Anterior chest pain associated with cervical intervertebral disk disease, ossified posterior longitudinal ligament or other spinal disorders is sometimes referred to as “cervical angina” (CA) or “pseudoangina” and is an often overlooked source of non-cardiac chest pain. 1-5

Although its exact prevalence is unknown, 1.4% to 16% of patients undergoing cervical disk surgery may have symptoms of CA. 1 Conversely, 1 study reported 5% of patients with angina pectoris having cervical nerve root pathology.5 Many patients describe their chest pain as “pressure” or crushing in quality mimicking typical cardiac ischemia chest pain, often resulting in extensive cardiac workup.  To add to the confusion, some patients even respond to nitroglycerin! One-half of patients also experience autonomic symptoms such as dyspnea, vertigo, nausea, diaphoresis, pallor, fatigue, and diploplia.1

Certain clues in the patient’s presentation should help us seriously consider the possibility of CA: 1-3

  • History of cervical radiculopathy eg, subjective upper extremity weakness or sensory changes, occipital headache or neck pain
  • Pain induced by cervical range of motion or movement of upper extremity
  • History of cervical injury or recent manual labor (eg, lifting, pulling or pushing)
  • Pain lasting greater than 30 min or less than 5 seconds and not relieved by rest
  • Positive Spurling maneuver ie, reproduction of symptoms by rotating the cervical spine toward the symptomatic side while providing a downward compression through the patient’s head

CA is often attributed to cervical nerve root compression, likely mediated by compression of C4-C8 nerve roots which also supply the sensory and motor innervation of the anterior chest wall.

Bonus Pearl: Did you know that experimental stimulation of spinothalamic tract cells in the upper thoracic and lower cervical segments have been shown to reproduce angina pain? 6

If you liked this pearl, sign up under menu and received future pearls straight into your mailbox!

References

  1. Susman WI, Makovitch SA, Merchant SHI, et al. Cervical angina: an overlooked source of noncardiac chest pain. The Neurohospitalist 2015;5:22-27. https://www.ncbi.nlm.nih.gov/pubmed/25553225
  2. Jacobs B. Cervical angina. NY State J Med 1990;90:8-11. https://www.ncbi.nlm.nih.gov/pubmed/2296405
  3. Sheps DS, Creed F, Clouse RE. Chest pain in patients with cardiac and noncardiac disease. Psychosomatic Medicine 66:861-67. https://www.ncbi.nlm.nih.gov/pubmed/15564350
  4. Wells P. Cervical angina. Am Fam Physician 1997;55:2262-4. https://www.ncbi.nlm.nih.gov/pubmed/9149653
  5. Nakajima H, Uchida K, Kobayashi S, et al. Cervical angina: a seemingly still neglected symptom of cervical spine disorder. Spinal Cord 2006;44:509-513. https://www.ncbi.nlm.nih.gov/pubmed/16331305
  6.  Cheshire WP. Spinal cord infarction mimicking angina pectoris. Mayo Clin Proc 2000;75:1197-99. https://www.ncbi.nlm.nih.gov/pubmed/11075751

 

My patient with angina symptoms also complains of neck pain with left arm numbness. Could they be related?

Should I use a hemoglobin level of 7 or 8 g/dL as a threshold for blood transfusion in my hospitalized patient?

Unlike its previous 2012 guidelines that recommended overlapping hemoglobin level triggers of 7 g/dL to 8 g/dL for most inpatients, the 2016 guidelines from AABB (formerly known as the American Association of Blood Banks) assigns 2 distinct tiers of hemoglobin transfusion triggers: 7 g/DL for hemodynamically stable adults, including those in intensive care units, and 8 g/dL for patients undergoing cardiac or orthopedic surgery or with preexisting cardiovascular disease1 , often defined as history of coronary artery disease, angina, myocardial infarction, stroke, congestive heart failure, or peripheral vascular disease2,3.  

These recommendations are based on an analysis of over 30 randomized trials, taking into account the potential risks of withholding transfusions, including 30-day mortality, and myocardial infarction. The new 2-tier recommendation specifically excludes those with acute coronary syndrome, severe thrombocytopenia (patients treated for hematological or oncological reasons who are at risk of bleeding), and chronic transfusion-dependent anemia.

The guidelines also emphasize that good clinical practice dictates considering not only the hemoglobin level but the overall clinical context when considering blood transfusion in patients. These factors include alternative therapies to transfusion, rate of decline in hemoglobin level, intravascular volume status, dyspnea, exercise tolerance, light-headedness, chest pain considered of cardiac origin, hypotension, tachycardia unresponsive to fluid challenge, and patient preferences.

References

  1. Carson JL, Guyatt G, Heddle NW. Clinical practice guidelines from the AABB red blood cell transfusion thresholds and storage. JAMA. Doi:10.1001/jama.2016.9185. Published online October 12, 2016. https://www.ncbi.nlm.nih.gov/pubmed/27732721
  2. Carson JL, Duff A, Poses RM, et al. Effect of anemia and cardiovascular disease on surgical mortality and morbidity. Lancet 1996;348:1055-60. https://www.ncbi.nlm.nih.gov/pubmed/8874456
  3. Carson JL, Siever F, Cook DR, et al. Liberal versus restrictive blood transfusion strategy: 3-year survial and cause of death results from the FOCUS randomized controlled trial. Lancet 2015;385:1183-1189. https://www.ncbi.nlm.nih.gov/pubmed/25499165
Should I use a hemoglobin level of 7 or 8 g/dL as a threshold for blood transfusion in my hospitalized patient?