Do proton pump inhibitors (PPIs) reduce the risk of bleeding from lower gastrointestinal tract?

The short answer is “No”!  Although proton pump inhibitors (PPIs) are effective in reducing the risk of upper gastrointestinal bleed (GIB) in high-risk patients, they do not protect against lower GIB. 1 In fact, their use has been associated with an increased risk of small bowel injury related to non-steroidal anti-inflammatory drugs (NSAIDs) and low-dose aspirin.2,3

A 2015 case-control study involving over 1,000 patients hospitalized for GIB found that although concomitant use of PPI in patients on NSAIDs, low-dose aspirin, other antiplatelet agents or anticoagulants was associated with a reduced risk of UGIB, it was not associated with reduced risk of lower GIB.  Interestingly, in this study, PPIs were associated with higher risk of lower GIB which might have been related to confounding factors and not necessarily a direct causal effect.4 Lack of an impact of PPIs on lower GIB among patients on aspirin or NSAIDS has also been supported by others. 5-7

The fact that PPIs don’t seem to reduce the risk of GIB distal to the duodenum should not be surprising given their primary mechanism of action through inhibition of acid production by gastric parietal cells. 8  What is perhaps more intriguing is how they may potentially increase the risk of small intestinal injury while still protecting the gastro-duodenum from NSAID-induced mucosal damage.

In a cool laboratory study involving rats, treatment with a PPI was associated with exacerbation of NSAID-induced intestinal ulceration and bleeding; by itself treatment with PPI was not associated with intestinal mucosa injury.9 Interestingly, in this study, a marked shifts in numbers and types of enteric bacteria with a significant reduction in jejunal Bifidobacteria spp was noted with PPI therapy. Restoration of small intestine Bifididobacteria during treatment with a PPI along with an NSAID prevented intestinal ulceration/bleeding. The investigators concluded that when used along with an NSAID, PPIs may cause small intestinal injury through alteration in the microbiome of the gut.  Fascinating!

Bonus Pearl: Did you know that the 2022 American Gastroenterological Association (AGA) clinical practice update on de-prescribing of PPIs lists several conditions for which acute/short term use of PPIs are NOT indicated, such as isolated lower GI symptomatology, acute nausea and vomiting not believed to be related to GERD/esophagitis, acute undifferentiated abdominal pain, and empiric treatment of laryngopharyngeal symptomatology? 10 

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 

References

  1. Lue A, Lanas A. Proton pump inhibitor treatment and lower gastrointestinal bleeding: Balancing risks and benefits. World J Gastroenterol 2016;22:10477-10481. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5192259/#:~:text=PPIs%20do%20not%20prevent%20NSAID,and%20the%20risk%20of%20LGB.
  2. Endo H, Sakai E, Taniguchi L, et al. Risk factors for small-bowel mucosal breaks in chronic low-dose aspirin users: data from a prospective multicenter capsule endoscopy registry. Gastrointes Endosc 2014;80:826-34. https://pubmed.ncbi.nlm.nih.gov/24830581/
  3. Washio E, Esaki M, Maehata Y, et al. Proton pump inhibitors increase incidence of nonsteroidal anti-inflammatory drug-induced small bowel injury: A randomized, placebo-controlled trial. Clin Gastroenterol Hepatol 2016;14:809-815. https://pubmed.ncbi.nlm.nih.gov/26538205/
  4. Lanas A, Carrera-Lasfuentes P, Arguedas Y, et al. Risk of upper and lower gastrointestinal bleeding in patients taking nonsteroidal anti-inflammatory drugs, antiplatelet agents, or anticoagulants. Clin Gastroenterol Hepatol 2015;13:906-12. https://pubmed.ncbi.nlm.nih.gov/25460554/
  5. Nagata N, Niikura R, Aoki T, et al. Effect of proton-pump inhibitors on the risk of lower gastrointestinal bleeding associated with NSAIDs, aspirin, clopidogrel, and warfarin. J Gastroenterol 2015;50:1079-1086. https://pubmed.ncbi.nlm.nih.gov/25700638/
  6. Garcia Rodriguez LA, Lanas A, Soriano-Gabarro M, et al. Effect of proton pump inhibitors on risks of upper and lower gastrointestinal bleeding among users of low-dose aspirin: A population-based observational study. J Clin Med 2020;9:928. https://www.mdpi.com/2077-0383/9/4/928
  7. Casado Arroyo R, Polo-Tomas M, Roncales MP, et al. Lower GI bleeding is more common than upper among patients on dual antiplatelet therapy: long-term follow-up of a cohort of a patients commonly using PPI co-therapy. Heart 2012;98:718-723. https://pubmed.ncbi.nlm.nih.gov/22523056/
  8. Engevik AC, Kaji I, Goldenring JR. The physiology of the gastric parietal cell. Physiol Rev 2020;100:573-602. The Physiology of the Gastric Parietal Cell – PMC (nih.gov)
  9. Wallace JL, Syer S, Denou E, et al. Proton pump inhibitors exacerbate NSAID-induced small intestinal injury by inducing dysbiosis. Gastroenterology 2011;141:1314-22. https://www.gastrojournal.org/action/showPdf?pii=S0016-5085%2811%2900926-7
  10. Targownik LE, Fisher DA, Saini SD. AGA clinical practice update on de-prescribing of proton pump inhibitors: expert review. Gastroenterology 2022;162:1334-1342. https://www.gastrojournal.org/article/S0016-5085(21)04083-X/fulltext

Disclosures/Disclaimers: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Mercy Hospital-St. Louis, Massachusetts General Hospital, Harvard Catalyst, Harvard University, their affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

Do proton pump inhibitors (PPIs) reduce the risk of bleeding from lower gastrointestinal tract?

Is there any evidence that proton pump inhibitors (PPIs) benefit patients with acute pancreatitis?

Despite their widespread use, there is no firm evidence that PPIs should be routinely prescribed in the treatment of acute pancreatitis (AP).1   In fact, current guidelines do not include the use of PPIs as standard therapy in  AP. 1-3

Although a 2023 systematic review and meta-analysis involving 6 randomized controlled trials and 3 cohort studies of patients with AP found a significant decrease in the rate of pancreatic pseudocyst formation in patients who received PPI, no significant difference in the rates of 7-day mortality, length of hospital stay, or acute respiratory distress syndrome was found when compared to control groups.3

Theoretically, PPIs may improve the course of AP through reduction in the incidence of stress-related upper GI hemorrhagic complications.  However, the incidence of such complications in AP is quite low, ranging from 1.2% to 14.5%, with great majority of cases (>85%) unrelated to peptic ulcer disease. 3,4  These findings may help explain why it has been difficult to show any benefit for use of PPIs in reducing the incidence of GI bleed in AP.3,5

Similarly, although PPIs have been shown to reduce secretin-stimulated bicarbonate secretion by the pancreas, the clinical significance of this finding in the overall course of AP—except perhaps a lower risk of pseudocysts—remains unclear.3 Parenthetically, experimental studies have reported contradictory results regarding the inhibition of pancreatic enzyme production by PPIs,  with omeprazole failing to suppress amylase release in isolated pancreatic acini while pantoprazole showing reduced amylase secretion in rats.3

It is also unclear how the reported anti-inflammatory effects of PPIs may benefit the clinical course of AP.3,6 What is clear is that any potential benefits of PPIs in AP should be weighed against their potential adverse effects, including the risk of nosocomial pneumonia, Clostridiodes difficile infection, and spontaneous bacterial peritonitis.7,8 

Bonus Pearl: Did you know that PPIs may not only inhibit acid production by gastric parietal cells but also interfere with bactericidal activity of neutrophils?  One potential mechanism is interference with proton pump-dependent H202 generation within lysosomes necessary to create a highly acidic and bactericidal environment. 9  Fascinating!

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 

References

  1. Arvanitakis M, Dumonceau JM, Albert J, et al. Endoscopic management of acute necrotizing pancreatitis: European Society of Gastrointestinal Endoscopy (ESGE) evidence-based multidisciplinary guideline. Endoscopy 2018; 50:524-46. Endoscopic management of acute necrotizing pancreatitis: European Society of Gastrointestinal Endoscopy (ESGE) evidence-based multidisciplinary guideline – European Society of Gastrointestinal Endoscopy (ESGE)
  2. Crocket SD, Wani S, Gardner TB, et al. American Gastroenterological Association Institute Guideline on Initial Management of Acute Pancreatitis. Gastroenterology 2018;154:1096-1101. American Gastroenterological Association Institute Guideline on Initial Management of Acute Pancreatitis (gastrojournal.org)
  3. Horvath IL, Bunduc S, Hanko B , et al. No evidence for the benefit of PPIs in the treatment of acute pancreatitis: a systematic review and meta-analysis. Scientific Reports 2023;13:2791. https://doi.org/10.1038/s41598-023-29939-S
  4. Rana SS, Sharma V, Bhasin Dk, et al. Gastrointestinal bleeding in acute pancreatitis: etiology, clinical features, risk factors and outcome. Tropical Gastroenterology 2015;36:31-35. http://www.tropicalgastro.com/articles/36/1/gastrointestinal-bleeding-in-acute.html
  5. Demcsak A, Soos A, Kincses L, et al. Acid suppression therapy, gastrointestinal bleeding and infection in acute pancreatitis-An international cohort study. Pancreatology 2020;20:1323-31.lyso https://www.sciencedirect.com/science/article/pii/S142439032030658X?via%3Dihub
  6. Hackert T, Tudor S, Felix K, et al. Effects of pantoprazole in experimental acute pancreatitis. Comparative Study 2010;8:551-7. https://pubmed.ncbi.nlm.nih.gov/20851132/
  7. Elzouki AB, Neffati N, Rasoul FA, et al. Increased risk of spontaneous bacterial peritonitis in cirrhotic patients using proton pump inhibitors. GE Port J Gastroenterol 2019; 26:83-89. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6454390/#:~:text=The%20result%20showed%20that%20PPI,medical%20literature%20confirm%20this%20association.
  8. Yibirin M, De Oliveira D, Valera R, et al. Cureus 2021;13:e12759/ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7887997/#:~:text=The%20most%20likely%20explanation%20for,incidence%20of%20pneumonia%20%5B2%5D
  9. Ozatik O, Ozatik EY, Tesen Y, et al. Research into the effect of proton pump inhibitors on lungs and leukocytes. Turk J Gastroenterol 2021;32:1003-1011. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8975296/

 

Disclosures/Disclaimers: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Mercy Hospital-St. Louis, Massachusetts General Hospital, Harvard Catalyst, Harvard University, their affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

 

Is there any evidence that proton pump inhibitors (PPIs) benefit patients with acute pancreatitis?

Why do we often prescribe ceftriaxone in preference to fluoroquinolones for prophylaxis of infections in patients with cirrhosis and upper GI bleed?

Preference of ceftriaxone over fluoroquinolones (FQs) for prophylaxis of infection in patients with cirrhosis and upper GI bleed (UGIB) can often be traced back to a small 2006 Spanish randomized controlled trial (RCT)1 which found a significantly lower rate of proved or possible bacterial infection and lower rate of fermentative Gram-negative bacilli infection in the ceftriaxone group (vs norfloxacin) over a 10-day period (11% vs 33% and 0% vs 11%, respectively). There was no significant difference in the incidence of proved bacterial infection (spontaneous bacterial peritonitis or bacteremia, P=0.07) or 10-day mortality between the 2 groups.   

It’s worth emphasizing that the primary impetus for this study was evaluation of the efficacy of ceftriaxone in patients with cirrhosis and UGIB in a setting where FQ Gram-negative bacilli was thought to be highly prevalent. Parenthetically, a similar RCT performed where the prevalence of FQ resistance was considered low failed to find a significant difference in breakthrough bacterial infection, rebleeding or mortality when ceftriaxone was compared to IV ciprofloxacin.2

Another caveat of the 2006 study was that an IV antibiotic (ceftriaxone) was compared to a oral antibiotic (norfloxacin) which, in the setting of active UGIB, may be problematic.

Despite these limitations, its favorable safety profile compared to FQs coupled with its ease of administration has often made ceftriaxone the drug of choice for prophylaxis of infections in patients with cirrhosis and UGIB. The 2016 Practice Guidance by the American Association for the Study of Liver Diseases considers ceftriaxone as the first choice in patients with advanced cirrhosis, on FQ prophylaxis, and in hospital settings with high prevalence of FQ resistant bacterial infection.3

Bonus Pearl: Did you know that the prevalence of FQ resistant in Enterobacteriaceae may be as high as 30% in certain regions of U.S. and >50% in certain regions of the world? 4

Also see related 2 P4P pearls (1, 2) on the association of UGIB bleed with infections in patients with cirrhosis.

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. Fernandez J, Del Arbol LR, Gomez C, et al. Norfloxacin vs ceftriaxone in the prophylaxis of infections in patients with advanced cirrhosis and hemorrhage. Gastroenterol 2006;131:1049-1056. https://pubmed.ncbi.nlm.nih.gov/17030175/
  2. Pittayanon R, Reknimir R, Kullavanijaya P, et al. Intravenous ciprofloxacin vs ceftriaxone for the prevention of bacterial infections in cirrhotic patients with gastrointestinal bleeding:A randomized controlled trial. Thai J Gastroenterol 2016;17:24-30. http://www.thaigastro.com/books.php?act=content&content_id=476&book_id=61
  3. Garcia-Tsao G, Abraldes JG, Berzigotti A, et al. Portal hypertensive bleeding in cirrhosis:risk stratification, diagnosis and management: 2016 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology 2017;65:310-335. https://pubmed.ncbi.nlm.nih.gov/27786365/
  4. Spellberg B, Doi Y. The rise of fluoroquinolone-resistant Escherichia coli in the community:scarier than we thought. J Infect Dis 2015;212:1853-1855. https://pubmed.ncbi.nlm.nih.gov/25969562/

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Mercy Hospital-St. Louis, Massachusetts General Hospital, Harvard Catalyst, Harvard University, their affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

Why do we often prescribe ceftriaxone in preference to fluoroquinolones for prophylaxis of infections in patients with cirrhosis and upper GI bleed?

Why might Lactated Ringer’s (LR) solution be preferred over normal saline (NS) for fluid resuscitation in acute pancreatitis?

Although the data is limited, fluid resuscitation with lactated Ringer’s (LR) solution in acute pancreatitis has been associated with lower risk of persistent systemic inflammatory response syndrome (SIRS) compared to normal saline (NS),  with an additional trend toward lower mortality.1-3

A 2018 meta-analysis of 3 randomized-controlled trials (RCTs) and 2 retrospective studies involving 428 patients found a significantly lower odds of developing SIRS at 24 hours (OR 0.38, CI 0.15-0.98).   Mortality was also lower in the LR group (OR 0.61, 95% CI 0.28-1.29), though it did not reach statistical significance. 1

A small 2011 RCT was the first to suggest the “protective” effect of LR in acute pancreatitis, reporting significant reduction in the prevalence of SIRS after 24 hours when compared to NS (84% vs 0%);  patients on LR also had a significantly lower C-reactive protein (CRP) (104 mg/L vs 51.4 mg/L) at 24 hours. 2   Significantly lower CRP levels were also reported at 48 and 72 hours when LR was compared to NS in another RCT in acute pancreatitis.3

As for potential mechanisms for the observed beneficial effects of LR on the pancreatic tissue in acute pancreatitis, hyperchloremic metabolic acidosis (with its attendant low extracellular pH) often seen in large volume NS resuscitation was initially thought to contribute to pancreatic injury.2  A more plausible explanation, however, may relate to the direct anti-inflammatory effect of lactate itself.  Of interest, lactate has been shown to inhibit macrophage induction invitro 4  and suppress innate immunity in experimental models of pancreatitis. 3 Who would have guessed!

Bonus Pearl: Did you know that Ringer’s solution gets its name from Sydney Ringer, a 19th century physician who demonstrated the importance of salts of sodium, potassium, calcium and chloride in precise proportions for cellular function?  LR solution was actually concocted in the 1930s by a St. Louis pediatrician, Alexis Hartmann, and was also known as the “Hartmann’s solution”. 4

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. Iqbal U, Anwar H, Scribani M. Ringer’s lactate versus normal saline in acute pancreatitis: A systematic review and meta-analysis. J Dig Dis 208;19:335-341. https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-2980.12606
  2. Wu BU, Hwang JQ, Gardner TH, et al. Clin Gastroenterol Hepatol 2011;9:710-17. https://www.cghjournal.org/article/S1542-3565(11)00454-X/abstract
  3. de-Madaria E, Herrera-Marante I, Gonzalez-Camacho V, et al. Fluid resuscitation with lactated Ringer’s solution vs normal saline in acute pancreatitis: A triple-blind, randomized, controlled trial. UEG J 2017;6:63-72. file:///C:/Users/manifa/OneDrive%20-%20Mercy%20Online/pancreatitis%20LR2spain.pdf
  4. Lee JA. Sydney Ringer (1834-1910) and Alexis Hartmann (1898-1964). Anaesthesia 1981;36:1115-21. https://associationofanaesthetists-publications.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2044.1981.tb08698.x

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Mercy Hospital-St. Louis or its affiliate healthcare centers. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

 

Why might Lactated Ringer’s (LR) solution be preferred over normal saline (NS) for fluid resuscitation in acute pancreatitis?

My patient with diverticular bleed has now developed signs of bowel ischemia with abdominal pain and sepsis after transcatheter colic artery embolization. Is bowel ischemia common after embolization of lower gastrointestinal (GI) arteries?

It may be more common than we think! Reported rates of bowel ischemia following lower GI artery embolization have been as high as 22% (1,2). For this reason, it is prudent to closely monitor for signs of bowel ischemia and infection in patients who undergo embolization to control lower GI bleeding.

In some cases, ischemia of the bowel appears to be mild enough to be treated conservatively, while in other cases bowel infarction with surgical intervention has been necessary (1).  One case report described signs of infection (including fever, abdominal tenderness and leukocytosis) 2 days after arterial embolization in a patient who was treated conservatively (3), while another described “sepsis” 6 days post procedure with bowel wall ischemia requiring surgical resection (1). 

Bowel injury leading to a septic picture following embolization of lower GI arteries should not be surprising given the expected capillary hypoperfusion and risk of tissue hypoxia.  Compared to embolization for upper GI bleed, lower GI embolization may place the patient at higher risk of bowel ischemia bowel ischemia due to lack of a rich collateral blood supply (1).  Older patients may also have mesenteric artery atherosclerotic disease or low cardiac output,  further compromising the collateral blood flow (3).  

At a more molecular level, hypoxia leads to the activation of hypoxia-inducible factor (HIF-1), which plays an important role in inducing gut injury. In fact, deletion of HIF-1a in mice prevented shock-induced intestinal permeability and bacterial translocation that ultimately led to bacteremia (4). 

As for preventing embolization-induced bacteremia, although antibiotics are used for liver and spleen embolization prophylaxis, their role in colic angioembolization is unclear (5).  

Bonus Pearl: Did you know that some of the earliest angioembolizations were performed during the Vietnam War to stop bleeding from bullet injuries? (6)

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References:

  1. Gady, J, Reynolds, H., & Blum, A. Selective arterial embolization for control of lower gastrointestinal bleeding: Recommendations for a clinical management pathway. Current Surg 2003; 60: 344-347. https://www.sciencedirect.com/science/article/abs/pii/S0149794402007493
  2. Rossetti A, Buchs NC, Breguet R, et al. Transarterial embolization in acute colonic bleeding: review of 11 years of experience and long-term results. Int J Colo Dis 2013;28:777-782. https://link.springer.com/article/10.1007/s00384-012-1621-5
  3. Shenoy, S, Satchidanand, S, & Wesp S. Colonic ischemic necrosis following therapeutic embolization. Gastrointest Radiol 1981, 6: 235-237. https://link.springer.com/article/10.1007/BF01890256
  4. Vollmar, B., & Menger, M. Intestinal ischemia/reperfusion: Microcirculatory pathology and functional consequences. Langenbeck Arch Surg 2011; 396: 13-29 https://link.springer.com/article/10.1007%2Fs00423-010-0727-x 
  5. Ryan, J. Mark, Ryan, Barbara M, & Smith, Tony P. Antibiotic prophylaxis in interventional radiology. JVIR 2004; 15: 547-556. https://www.sciencedirect.com/science/article/pii/S1051044307603248
  6. Nolan, T, Phan H, Hardy A, et al. Bullet embolization: Multidisciplinary approach by interventional radiology and surgery. Semin Interven Radiol 2012, 29: 192-6. https://www.ncbi.nlm.nih.gov/pubmed/23997411 

Contributed by Hannah Ananda Bougleux Gomes, Medical Student, Harvard Medical School, Boston, MA.

My patient with diverticular bleed has now developed signs of bowel ischemia with abdominal pain and sepsis after transcatheter colic artery embolization. Is bowel ischemia common after embolization of lower gastrointestinal (GI) arteries?

I am admitting a patient with diabetes mellitus (DM) due to chronic pancreatitis. Should I manage her diabetes any differently than my other patients with DM?

You may have to!  That’s because patients with DM due to pancreatic disease (also known as “pancreatogenic [Type 3C] diabetes”) tend to have more labile blood glucoses with particular predisposition to severe hypoglycemic episodes due to the impairment of glucagon production by pancreatic alpha-cells. 1-3

This observation dates back to a 1977 study where a high rate of hypoglycemic episodes was found among 59 patients with chronic pancreatitis (most with insulin-dependent DM), including 3 deaths and 2 suffering from severe brain damage following hypoglycemic coma. Interestingly, low basal glucagon levels were found in the latter patients, supporting impairment in glucagon synthesis. Of note, while hypoglycemia is a serious problem in these patients, they are not spared from complications of chronic hyperglycemia, including retinopathy and kidney disease.2

As for the blood glucose management in type 3C DM, since the principle endocrine defect is insulin deficiency, insulin therapy is preferred for most patients, particularly those who are acutely ill or are hospitalized. For otherwise more stable patients with mild hyperglycemia, metformin is an ideal agent as it enhances hepatic insulin sensitivity without the risk of hypoglycemia. As a bonus, metformin may also decrease the risk of pancreatic cancer in chronic pancreatitis, based on observational studies. 4

Also, don’t forget that concurrent pancreatic exocrine insufficiency is common in patients with type 3C DM and requires oral pancreatic enzyme requirement with meals.

Fascinating Pearl: Did you know that in patients with type 3C DM, hyperglycemia is mediated not only by decreased production of insulin, but also by decreased synthesis of pancreatic polypeptide, a peptide that mediates hepatic insulin sensitivity and glucose production? 5

If you liked this post, download the app, sign up under MENU and catch future pearls right into your inbox, all for free!

References

  1. Linde, J, Nilsson LH, Barany FR. Diabetes and hypoglycemia in chronic pancreatitis. Scand J Gastroenterol. 2012;12, 369–373. https://www.ncbi.nlm.nih.gov/pubmed/867001
  2. Andersen D. The practical importance of recognizing pancreatogenic or type 3c diabetes. Diabetes Metab Res Rev. 2012;28:326-328. https://onlinelibrary.wiley.com/doi/abs/10.1002/dmrr.2285
  3. Cui YF, Andersen DK. Pancreatogenic diabetes: Special considerations for management. Pancreatology. 2011;11(3):279-294. doi:10.1159/000329188. https://jhu.pure.elsevier.com/en/publications/pancreatogenic-diabetes-special-considerations-for-management-4
  4. Evans J, Donnelly L, Emsley-Smith A. Metformin and reduced risk of cancer in diabetic patients. Br Med J. 2005;330:1304-1305. https://www.researchgate.net/publication/7888859_Metformin_and_reduced_risk_of_cancer_in_diabetic_patients
  5. Rabiee A. Gafiatsatos P, Salas-Carnillo R. Pancreatic polypeptide administration enhances insulin sensitivity and reduces the insulin requirement of patents on insulin pump therapy. Diabetes Sci Technol 2011;5:1521-28.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3262724/

Contributed by Hugo Torres, MD, MPH, Hospital Medicine Unit, Mass General Hospital, Boston, Massachusetts

I am admitting a patient with diabetes mellitus (DM) due to chronic pancreatitis. Should I manage her diabetes any differently than my other patients with DM?

Should I consider acute acalculous cholecystitis in my elderly ambulatory patient admitted with right upper quadrant pain?

Short answer: Yes! Although we usually associate acute acalculous cholecystitis (AAC) with critically ill patients (eg, with sepsis, trauma, shock, major burns) in ICUs, AAC is not as rare as we might think in ambulatory patients. In fact, a 7 year study of AAC involving multiple centers reported that AAC among outpatients was increasing in prevalence and accounted for 77% of all cases (1)!

 
Although the pathophysiology of ACC is not fully understood, bile stasis and ischemia of the gallbladder either due to microvascular or macrovascular pathology have been implicated as potential causes (2). One study found that 72% of outpatients who developed ACC had atherosclerotic disease associated with hypertension, coronary, peripheral or cerebral vascular disease, diabetes or congestive heart failure (1). Interestingly, in contrast to calculous cholecystitis, “multiple arterial occlusions” have been observed on pathological examination of the gallbladder in at least some patients with ACC and accordingly a name change to “acute ischemic cholecystitis” has been proposed (3).

 
AAC can also complicate acute mesenteric ischemia and may herald critical ischemia and mesenteric infarction (3). The fact that cystic artery is a terminal branch artery probably doesn’t help and leaves the gallbladder more vulnerable to ischemia when arterial blood flow is compromised irrespective of the cause (4).

 
Of course, besides vascular ischemia there are numerous other causes of ACC, including infectious (eg, viral hepatitis, cytomegalovirus, Epstein-Barr virus, Salmonella, brucellosis, malaria, Rickettsia and enteroviruses), as well as many non-infectious causes such as vasculitides and, more recently, check-point inhibitor toxicity (1,5-8).

 
Bonus Pearl: Did you know that in contrast to cholecystitis associated with gallstones (where females and 4th and 5th decade age groups predominate), ACC in ambulatory patients is generally more common among males and older age groups (mean age 65 y) (1)?

 

If you liked this post, download the app and sign up under MENU to catch future pearls straight into your inbox, all for free! 

 

References
1. Savoca PE, Longo WE, Zucker KA, et al. The increasing prevalence of acalculous cholecystitis in outpatients: Result of a 7-year study. Ann Surg 1990;211: 433-37. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1358029/pdf/annsurg00170-0061.pdf
2. Huffman JL, Schenker S. Acute acalculous cholecystitis: A review. Clin Gastroenterol Hepatol 2010;8:15-22. https://www.cghjournal.org/article/S1542-3565(09)00880-5/pdf
3. Hakala T, Nuutinene PJO, Ruokonen ET, et al. Microangiopathy in acute acalculous cholecystitis Br J Surg 1997;84:1249-52. https://bjssjournals.onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-2168.1997.02775.x?sid=nlm%3Apubmed
4. Melo R, Pedro LM, Silvestre L, et al. Acute acalculous cholecystitis as a rare manifestation of chronic mesenteric ischemia. A case report. Int J Surg Case Rep 2016;25:207-11. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4941110/
5. Aguilera-Alonso D, Median EVL, Del Rosal T, et al. Acalculous cholecystitis in a pediatric patient with Plasmodium falciparum infection: A case report and literature review. Ped Infect Dis J 2018;37: e43-e45. https://journals.lww.com/pidj/pages/articleviewer.aspx?year=2018&issue=02000&article=00020&type=Fulltext  
6. Kaya S, Eskazan AE, Ay N, et al. Acute acalculous cholecystitis due to viral hepatitis A. Case Rep Infect Dis 2013;Article ID 407182. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3784234/pdf/CRIM.ID2013-407182.pdf
7. Simoes AS, Marinhas A, Coelho P, et al. Acalculous acute cholecystitis during the course of an enteroviral infection. BMJ Case Rep 2013;12. https://casereports.bmj.com/content/12/4/e228306
8. Abu-Sbeih H, Tran CN, Ge PS, et al. Case series of cancer patients who developed cholecystitis related to immune checkpoint inhibitor treatment. J ImmunoTherapy of Cancer 2019;7:118. https://jitc.biomedcentral.com/articles/10.1186/s40425-019-0604-2

 

 

Should I consider acute acalculous cholecystitis in my elderly ambulatory patient admitted with right upper quadrant pain?

My elderly patient with abdominal pain has a negative Murphy’s sign on physical exam. How accurate is Murphy’s sign in diagnosing cholecystitis?

Not as accurate as we might like! In fact, no single clinical finding has been found to carry sufficient weight in ruling in or excluding cholecystitis and Murphy’s sign (inability to take a deep breath due to pain upon palpation of the right upper quadrant) is no exception. 1

A meta-analysis of patients with Murphy’s sign reported a sensitivity of 65% and a specificity of 87% (positive LR 2.8, negative LR 0.4, with 95% C.I. including 1.0 in both). 1,2  However, among the elderly (mean age 79 y), the sensitivity may be as slow as 48% 2 and in patients with gangrenous cholecystitis as low as 33%.3  

In contrast, Murphy’ s sign elicited at the time of ultrasound of the gallbladder (ie,“sonographic Murphy’s) is generally thought to very sensitive  (>90%) for acute cholecystitis;3,4 1 study reported a sensitivity of 63%, however (specificity 94%).5  Remember that altered mental status may also mask sonographic Murphy’s sign. 

Indirect fist percussion of the liver has been suggested by some authors as a more sensitive alternative to Murphy’s sign (100% vs 80%) in a small series of patients with cholecystitis.2

Bonus pearl: Did you know that another technique originally described by the famed American surgeon, John Murphy, to diagnose acute cholecystitis consisted of the “hammer stroke maneuver” in which percussion of the right midsubcostal region with the bent middle finger of the left hand was performed using the right hand to strike the dorsum of the left hand with hammer-like blows? 6

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. Trowbridge RL, Rutkowski NK, Shojania KG. Does this patient have acute cholecystitis. JAMA 2003;289:80-86. https://jamanetwork.com/journals/jama/article-abstract/195707
  2. Ueda T, Ishida E. Indirect fist percussion of the liver is a more sensitive technique for detecting hepatobiliary infections than Murphy’s sign. Current Gerontol Geriat Res, Volume 2015, Article ID 431638. https://www.hindawi.com/journals/cggr/2015/431638/
  3. Simeone JF, Brink JA, Mueller PR, et al. The sonographic diagnosis of acute gangrenous cholecystitis. The importance of the Murphy sign. AJR 1989;152:289-90. https://www.ncbi.nlm.nih.gov/pubmed/2643262
  4. O’Connor OJ, Maher MM. Imaging of cholecystitis. AJR 2011;196:W36774. https://www.ajronline.org/doi/full/10.2214/AJR.10.4340
  5. Rallis PW, Lapin SA, Quinn MF, et al. Prospective evaluation of the sonographic Murphy sign in suspected acute cholecystitis. J Clin Ultrasound 1982;10:113-5. https://www.ncbi.nlm.nih.gov/pubmed/6804512
  6. Salati SA, al Kadi A. Murphy’s sign of cholecystitis-a brief revisit. Journal of Signs and Symptoms 2012;1:53-6. https://www.researchgate.net/publication/230820198_Murphy’s_sign_of_cholecystitis-_a_brief_revisit

 

 

My elderly patient with abdominal pain has a negative Murphy’s sign on physical exam. How accurate is Murphy’s sign in diagnosing cholecystitis?

My patient with history of gastric bypass surgery now presents with right upper quadrant pain and gallstones. Is there a connection between gastric bypass surgery and gallstones?

An increased risk of new gallstones following gastric bypass surgery (GBS) has been reported by several studies (1-5).  More specifically, a study involving patients with baseline normal gallbladder ultrasound found that at 6 months following GBS 36% of patients developed gallstones and 13% developed sludge (4).  Similarly, a gallstone formation rate of 32% has been reported after GBS among patients who did not receive prophylactic treatment (5). 

New cholelithiasis following GBS may be largely attributed to rapid weight loss following this procedure, not the surgery itself or its related anatomical changes. Of interest, rapid weight loss, even by dieting, has been shown to increase the risk of gallstones (6).

However, overweight patients also have an increased risk of developing cholelithiasis at baseline, in part related to increased cholesterol secretion resulting in bile supersaturation with cholesterol (1).  Though weight loss may be expected to decrease this risk, rapid weight loss is thought to change the bile composition towards higher concentrations of calcium and cholesterol and increased production of gallbladder mucin, contributing to the pathogenicity of gallstone formation (5). 

In light of these findings, some have recommended routine prophylactic cholecystectomy as part of the GBS (7,8),  while others have argued against it (9,10), largely due to different observed rates of post-GBS symptomatic gallstones requiring cholecystectomies in various studies. Of note, post-operative ursodiol (ursodeoxycholic acid) may also reduce the incidence of post-GBS cholelithiasis (5,11). 

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

1. Everhart JE. Contributions of obesity and weight loss to gallstone disease. Ann Intern Med 1993;119(10):1029–35. https://www.ncbi.nlm.nih.gov/pubmed/8214980
2. Wudel LJ, Wright JK, Debelak JP, Allos TM, Shyr Y, Chapman WC. Prevention of gallstone formation in morbidly obese patients undergoing rapid weight loss: Results of a randomized controlled pilot study. J Surg Res 2002;102(1):50–6. https://www.ncbi.nlm.nih.gov/pubmed/11792152
3. Manatsathit W, Leelasincharoen P, Al-Hamid H, Szpunar S, Hawasli A. The incidence of cholelithiasis after sleeve gastrectomy and its association with weight loss: A two-centre retrospective cohort study. Int J Surg [Internet] 2016;30:13–8. Available from: http://dx.doi.org/10.1016/j.ijsu.2016.03.060 https://www.ncbi.nlm.nih.gov/pubmed/27063855
4. Shiffman M, Sugerman H, Kellum J, Brewer W, Moore E. Gallstone formation after rapid weight loss: a prospective study in patients undergoing gastric bypass surgery for treatment of morbid obesity. Am J Gastroenterol 1991;(86):1000–5. https://www.ncbi.nlm.nih.gov/pubmed/1858735
5. Sugerman H, Brewer W, Shiffman M, et al. A Multicenter, Placebo-Controlled, Randomized, Double-Blind, Prospective Trial of Prophylactic Ursodiol for the Prevention of Gallstone Formation Rapid Weight Loss. Am Jourmal Surg 1995;169(January):91–7. https://www.ncbi.nlm.nih.gov/pubmed/7818005

6. de Oliverira CIB, Chaim EA, da Silva BB. Impact of rapid weight reduction on risk of cholelithiasis after bariatric surgery. Obesity Surgery 2003;13:625-8.
7. Tarantino I, Warschkow R, Steffen T, Bisang P, Schultes B, Thurnheer M. Is routine cholecystectomy justified in severely obese patients undergoing a laparoscopic Roux-en-Y gastric bypass procedure? A comparative cohort study. Obes Surg 2011;21(12):1870–8. https://reference.medscape.com/medline/abstract/21863228
8. Amstutz S, Michel JM, Kopp S, Egger B. Potential Benefits of Prophylactic Cholecystectomy in Patients Undergoing Bariatric Bypass Surgery. Obes Surg 2015;25(11):2054–60. https://link.springer.com/article/10.1007%2Fs11695-015-1650-6
9. Karadeniz M, Gorgun M, Kara C. The evaluation of gallstone formation in patients undergoing Roux-en -Y gastric bypass due to morbid obesity. Turkish J Surg 2014;30(2):76–9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4379817/
10. D’Hondt M, Sergeant G, Deylgat B, Devriendt D, Van Rooy F, Vansteenkiste F. Prophylactic Cholecystectomy, a Mandatory Step in Morbidly Obese Patients Undergoing Laparoscopic Roux-en-Y Gastric Bypass? J Gastrointest Surg 2011;15(9):1532–6. https://www.ncbi.nlm.nih.gov/pubmed/21751078
11. Miller K, Hell E, Lang B, Lengauer E. Gallstone Formation Prophylaxis after Gastric Restrictive Procedures for Weight Loss: A Randomized Double-Blind Placebo-Controlled Trial. Ann Surg 2003;238(5):697–702. https://www.ncbi.nlm.nih.gov/pubmed/14578732

Contributed by Kim Schaefer, Harvard medical student, Boston, MA. 

 

My patient with history of gastric bypass surgery now presents with right upper quadrant pain and gallstones. Is there a connection between gastric bypass surgery and gallstones?

Is my hospitalized patient with possible pneumonia at risk of Clostridium difficile-associated disease after only 1-3 days of empiric antibiotic therapy?

Yes! Even relatively brief duration of antibiotic therapy may increase the risk of Clostridium difficile-associated disease (CDAD) in a susceptible host.
In a study of hospitalized patients with new-onset diarrhea, prior exposure to levofloxacin and cefazolin was significantly associated with CDAD with the median duration of therapy for levofloxacin of 3 days (range 1-18 days), and for cefazolin 2 days (range 1-3 days) (1). Similarly, a study in hospitalized patients during a CDAD epidemic found a significantly increased risk of CDAD among patients who received fluoroquinolones for only 1-3 days (hazard ratio 2.4) with a 95% confidence interval (1.6-3.6) that overlapped 4-6 days and ≥ 7 days treatment groups (2). Yet another study found no significant difference in the risk of CDAD between those on antibiotic for < 4 days vs 4-7 days of antibiotics (3). CDAD following a single dose of cefazolin has also been reported (4).
Of interest, laboratory studies in mice have shown a profound alteration of intestinal microbiota following a single dose of clindamycin, resulting in increased susceptibility to C. difficile colitis (5).
So although duration of antibiotic therapy is an important factor in CDAD (3, 6) and we should minimize the duration of antibiotic therapy whenever possible, not starting antibiotics in the absence of clear indication is even better!

References
1. Manian FA, Aradhyula S, Greisnauer S, et al. Is it Clostridium difficile infection or something else? A case-control study of 352 hospitalized patients with new-onset diarrhea. S Med J 2007;100:782-786. https://www.ncbi.nlm.nih.gov/pubmed/17713303
2. Pepin J, Saheb N, Coulombe MA, et al. Emergence of fluoroquinolones as the predominant risk factor for Clostridium difficile-associated diarrhea: a cohort study during an epidemic in Quebec. Clin Infect Dis 2005;41:1254-60. https://www.ncbi.nlm.nih.gov/pubmed/16206099
3. Stevens V, Dumyati G, Fine LS, et al. Cumulative antibiotic exposures over time and the risk of Clostridium difficile infection. Clin Infect Dis 2011;53:42-48. https://www.ncbi.nlm.nih.gov/pubmed/21653301
4. Mcneeley SG, Anderson GD, Sibai BM. Clostridium difficile colitis associated with single dose cefazolin prophylaxis. Ob Gynecol 1985;66:737-8. https://www.ncbi.nlm.nih.gov/pubmed/4058831
5. Buffie CG, Jarchum I, Equinda M, et al. Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect Immun 2011;80: 62-73. https://www.ncbi.nlm.nih.gov/pubmed/22006564
6. Chalmers JD, Akram AR, Sinanayagam A, et al. Risk factors for Clostridium difficile infection in hospitalized patients with community-acquired pneumonia. J Infect 2016;73:45-53. https://www.ncbi.nlm.nih.gov/pubmed/27105657

Disclosure: The contributor of this post was a coinvestigator of a cited study (ref. 1).

If you liked this post, sign up under menu and get future pearls straight into your mailbox!

Is my hospitalized patient with possible pneumonia at risk of Clostridium difficile-associated disease after only 1-3 days of empiric antibiotic therapy?