When evaluating for an esophageal perforation, is a water-soluble contrast agent such as Gastrografin a better and safer alternative to barium swallow study?

Water-soluble contrast agents (WCAs) (eg, meglumine diatrizoate or Gastrografin) are often ordered as the initial radiographic test for evaluation of esophageal perforation or leaks, followed by barium swallow if the test is negative because small leaks are better detected with the more radiopaque barium1.  Such practice, however, is based on extrapolation of data on the deleterious effect of barium when extravasated into the peritoneal cavity, not the mediastinum1.   In fact, clinical evidence linking mediastinitis to extravasated barium is lacking, and even in experimental studies, injection of barium into the mediastinum of cats have failed to cause clinically significant mediastinitis2.

When ordering a contrast swallow study, no medium should be considered totally safe or effective in detecting esophageal perforations or leaks and WCAs are no different. Potential disadvantages of WCAs include: 1. Inferior sensitivity (as low as 50%)—due to decreased radio-opacity—when compared to barium3; 2. Risk of pulmonary edema—occasionally lethal— when aspirated into the lung due to high osmolality (analogous to salt water drowning) and intense inflammatory reaction4,5; 3. Contraindication in the setting of tracheoesophageal fistula,6; 4. Risk of serious allergic reaction due to reabsorption of iodinated compounds1; and 5. Added exposure to radiation and cost of testing when the swallow study is repeated with barium.  For these reasons, the standard practice of an initial WCA followed by a barium swallow`study if the former is negative, has been questioned, with some centers foregoing the WCA study altogether in favor of barium swallow in certain patients 1,6.

In short, when evaluating for esophageal perforation, WCAs should not categorically be considered a “better” or “safer” alternative to barium; in certain situations, barium may be the preferred agent. When in doubt, input from a thoracic surgeon is recommended.  

 

References

  1. Gollub MJ, Bains MS. Barium sulfate: a new (old) contrast agent for diagnosis of postoperative esophageal leaks. Radiology 1997;202:360-62. https://www.ncbi.nlm.nih.gov/pubmed/9015057
  2. James AE, Montali RJ, Chaffee V, et al. Barium or gastrografin: which contrast media for diagnosis of esophageal tears? Gastroenterology 1975;68:1103-1113. https://www.ncbi.nlm.nih.gov/pubmed/1126592
  3. Berry BE, Ochsner JL. Perforation of the esophagus: a 30 year review. J Thorac Cardiovasc Surg 1973;65:1-7. http://www.jpedsurg.org/article/0022-3468(73)90248-0/abstract
  4. Trulzsch DV, PenmetsaA, Karim A, et al. Gastrografin-induced aspiration pneumonia: A lethal complication of computed tomography. South Med J 1992;85:1255-56. https://www.ncbi.nlm.nih.gov/pubmed/1470976
  5. Tuladhar R, Patole S, Whitehall J. Gastrografin aspiration in a neonate with tracheoesophageal fistula. J Paediatr Child Health 2000; 36:94-6. https://www.ncbi.nlm.nih.gov/pubmed/10723703
  6. FDA https://www.drugs.com/pro/gastrografin.html.
  7. Roh S, Iannettoni MD, Keech JC, et al. Role of barium swallow in diagnosing clinically significant anastomotic leak following esophagectomy. Korean J Thorac Cardiovasc Surg 2016;49:99-109. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4825910/pdf/kjtcv-49-099.pdf

 

When evaluating for an esophageal perforation, is a water-soluble contrast agent such as Gastrografin a better and safer alternative to barium swallow study?

My middle age patient complains of night sweats for several months, but she has had no weight loss and does not appear ill. What could I be missing?

Night sweats (NS) is a common patient complaint, affecting about a third of hospitalized patients on medical wards1.  Despite its long list of potential causes, direct relationship between the often- cited conditions and NS is usually unclear2, its cause may remain elusive In about a third to half of cases in the primary care setting, and its prognosis, at least in those >65 y of age, does not appear to be unfavorable 2,3.

Selected commonly and less frequently cited conditions associated with NS are listed (Table)2-9.  Although tuberculosis is one of the first conditions we think of when faced with a patient with NS, it should be emphasized that NS is not common in this disease (unless advanced) and is rare among hospitalized patients as a cause of their NS1,9.

In one of the larger study of adult patients seen in primary care setting, 23% reported pure NS and an additional 18% reported night and day sweats5; the prevalence of NS in both men and women was highest in 41-55 y age group. In multivariate analyses, factors associated with pure NS in women were hot flashes and panic attacks; in men, sleep disorders. 

Table. Selected causes of night sweats

Commonly cited Less frequently cited
Neoplastic/hematologic (eg, lymphoma, leukemia, myelofibrosis)

Infections (eg, HIV, tuberculosis, endocarditis)

Endocrine (eg, ovarian failure, hyperthyroidism, orchiectomy, carcinoid tumor, diabetes mellitus [nocturnal hypoglycemia], pheochromocytoma)

Rheumatologic (eg, giant cell arteritis)

Gastroesophageal reflux disease

B-12 deficiency

Pulmonary embolism

Drugs (eg, anti-depressants, SSRIs, donepezil [Aricept], tacatuzumab)

Sleep disturbances (eg, obstructive sleep apnea)

Panic attacks/anxiety disorder

Obesity

Hemachromatosis

Diabetes insipidus

References

  1. Lea MJ, Aber RC, Descriptive epidemiology of night sweats upon admission to a university hospital. South Med J 1985;78:1065-67.
  2. Mold JW, Holtzclaw BJ, McCarthy L. Night sweats: A systematic review of the literature. J Am Board Fam Med 2012; 25-878-893.
  3. Mold JW, Lawler F. The prognostic implications of night sweats in two cohorts of older patients. J Am Board Fam Med 2010;23:97-103.
  4. Mold JW, Holtzclaw BJ. Selective serotonin reuptake inhibitors and night sweats in a primary care population. Drugs-Real World Outcomes 2015;2:29-33.
  5. Mold JW, Mathew MK, Belgore S, et al. Prevalence of night sweats in primary care patients: An OKPRN and TAFP-Net collaborative study. J Fam Pract 2002; 31:452-56.
  6. Feher A, Muhsin SA, Maw AM. Night sweats as a prominent symptom of a patient presenting with pulmonary embolism. Case reports in Pulmonology 2015. http://dx.doi.org/10.1155/2015/841272
  7. Rehman HU. Vitamin B12 deficiency causing night sweats. Scottish Med J 2014;59:e8-11.
  8. Murday HK, Rusli FD, Blandy C, et al. Night sweats: it may be hemochromatosis. Climacteric 2016;19:406-8.
  9. Fred HL. Night sweats. Hosp Pract 1993 (Aug 15):88.
My middle age patient complains of night sweats for several months, but she has had no weight loss and does not appear ill. What could I be missing?

My patient with spontaneous bacterial peritonitis (SBP) is requiring IV albumin. Does IV albumin do anything other than expand the plasma volume?

Yes! Besides expanding the circulatory plasma volume by raising the oncotic pressure, albumin appears to have a vasoconstricting effects by binding to endotoxins, nitric oxide (NO), bilirubin and fatty acids1,2. Splanchnic vasodilatation, a feature of decompensated cirrhosis (eg ascites, bleeding varices, hepatorenal syndrome, and hepatic encephalopathy), is accentuated by superimposed infections through cytokine-mediated release of endothelial vasodilators3.  By binding to potential vasodilators such as bile acids, endotoxins and NO, albumin may also help restore endothelial function and act as a vasoconstrictor.  

In a cool study involving patients with SBP randomized to either albumin or hydroxyethyl starch (HS, a synthetic volume expander), the albumin (not HS) group had a significant increase in mean arterial pressure, right atrial pressure, pulmonary artery pressure,  systolic volume, left ventricular stroke work, and systemic vascular resistance3.

Albumin may also have an immune-modulating activity in patients with cirrhosis or acute liver decompensation by binding to prostaglandin E-2 (PGE-2), generated as a result of inflammatory reaction in the liver and bacterial translocation4.  PGE-2 is a suppressor of macrophage cytokine secretion and bacterial killing.  By binding to PGE-2, albumin can reverse this immunosuppression by reducing the availability of serum PGE-2.

References

  1. Baraldi O, Valenini C, Donati G, et al. Hepatorenal syndrome: update on diagnosis and treatment 2015;4:511-20.
  2. Angeli P, Volpin R, Piovan D, et al. Acute effects of the oral administration of midodrine, an α-adrenergic agonist, on renal hemodynamics and renal function in cirrhotic patients with ascites. Hepatology 1998;28:937-43.
  3. Fernandez J, Monteagudo J, Bargallo X, et al. A randomized unblended pilot study comparing albumin versus hydroxyethyl starch in spontaneous bacterial peritonitis. Hepatology 2005;42:627-634.
  4. Gleeson, MW, Dickson RC. Albumin gains immune boosting credibility. Clin Transl 2015;6:e86;doi:10.1038/ctg.2015.11.
My patient with spontaneous bacterial peritonitis (SBP) is requiring IV albumin. Does IV albumin do anything other than expand the plasma volume?

The serum creatinine of my patient originally admitted for management of tense ascites is slowly rising. How concerned should I be?

Although the causes of increasing serum creatinine (SCr) in patients with cirrhosis are legion (eg, sepsis, acute tubular injury, and intravascular volume depletion due to over-diuresis, gastrointestinal bleed, or other causes), the most feared cause is often hepatorenal syndrome (HRS). HRS is a functional renal impairment that reflects the final pathophysiological stages of systemic circulatory impairment1, and significantly contributes to a worsening prognosis in patients with cirrhosis2. For example, without treatment, in patients whose SCr doubles in less than 2 weeks (type I HRS) the median survival is less than 2 weeks , while in those who develop a more gradual renal impairment (type II HRS) the median survival is 6 months3.

Physiologically, HRS is a culmination of significant vasodilation in the splanchnic arteries which, in time, leads to reduced organ perfusion due to a drop in the cardiac output. The associated increase in the activity of the renin-angiotensin-aldosterone and the sympathetic nervous systems contributes to sodium and water retention, and further exacerbates intra-renal vasoconstriction and ascites3.

The primary goal in the medical management of HRS is to increase splanchnic vascular resistance4, often by administering a combination of IV albumin, octreotide and other vasoconstricting agents (eg, midodrine, norepinephrine, or terlipressin [unavailable in US and Canada]).  Of interest, in addition to expanding the circulating plasma volume, albumin may have a vasoconstricting effect by binding to endotoxins, nitric oxide, bilirubin and fatty acids4!

 

References

  1. Arroyo V, Fernandez J, Gines P. Pathogenesis and treatment of hepatorenal syndrome. Semin Liver Dis 2008;28:81-95.
  2. Salerno F, Gerbes A, Ginès P, et al. Diagnosis, prevention and treatment of hepatorenal syndrome in cirrhosis. Gut. 2007 Sep;56(9):1310-8.
  3. Cardenas A, Gines P. A Patient with cirrhosis and increasing creatinine Level: What Is It and what to do? Clin Gatroenterol Hepatol 2009;7:1287–1291. 
  4. Baraldi O, Valentini C, Donati G, et al. Hepatorenal syndrome: Update on diagnosis and treatment. World J Nephrol. 2015;4:511-20.

Contributed by Alireza Sameie, Medical Student, Harvard Medical School

The serum creatinine of my patient originally admitted for management of tense ascites is slowly rising. How concerned should I be?

What is the clinical significance of “white bile” from my patient’s gallbladder drain?

“White bile” (WB) (Figure) is a clear sero-mucous secretion of gallbladder that is largely devoid of bilirubin and bile salts. It arises from glycoproteins that are normally secreted by the mucosal glands of the gallbladder infundibulum and neck, and is thought to shield the gallbladder wall from the lytic action of bile.

WB is observed in “hydrops” of gallbladder and is caused by absorption of bile by the gallbladder wall in the setting of persistent cystic duct obstruction1. It is commonly held that in persistent cystic duct obstruction, bile in the gallbladder is eventually absorbed into the lymphatics and blood vessels but that the gallbladder epithelium continues to produce clear sero-mucous secretions. In this setting, dilatation, perforation, and atrophy of the gallbladder lumen may also occur1-3.  Early cholecystostomy tube placement or cholecystectomy is often indicated1,3.

Common etiologies of persistent cystic duct blockage in adults include, stone impaction, cystic duct stenosis, tumors/polyps, and parasites (eg, ascariasis).

Figure: “White bile” drainage from a cholecystostomy drain of a patient with cholecystitis and persistent cystic duct blockage due to stones. The drainage was completely clear with mucous characteristics. 

whitebile

Reference:

  1. Schwartz, Seymour I, Brunicardi, F. Charles., eds. Schwartz’s Principles Of Surgery. New York : McGraw-Hill Medical, 2011.
  2. Ahmed A, Cheung RC, Keeffe EB. Management of gallstones and their complications. Am Fam Physician 2000; 61, 1673-1680.
  3. Lawrence S. Friedman, Mark Feldman. Sleisenger and Fordtran’s Gastrointestinal and Liver Disease 10th Edition. Philadelphia, PA: Elsevier, 2015.

Contributed by Alireza Sameie, Medical Student, Harvard Medical School

What is the clinical significance of “white bile” from my patient’s gallbladder drain?

What complications should I look for in my hospitalized patient suspected of having check-point inhibitor toxicity?

Targeting the host immune system via monoclonal antibodies known as checkpoint inhibitors (CPIs) is an exciting new strategy aimed at interfering with the ability of cancer cells to evade the patient’s existing antitumor immune response. CPIs have been shown to be effective in a wide variety of cancers and are likely to be the next major breakthrough for solid tumors1-3. Unfortunately, serious—at times fatal— immune-related Adverse Events (irAEs) have also been associated with their use4,5.

IrAEs occur in the majority of patients treated with nivolumab (a programmed death 1 [PD-1] CPI] or ipilimumab (a cytotoxic T-lymphocyte-associated antigen 4 [CTLA-4] CPI)1. The severity of irAEs may range from mild (grade 1) to very severe (grade 4). Grading system categories discussed in more detail at link below:

https://www.eortc.be/services/doc/ctc/CTCAE_4.03_2010-06-14_QuickReference_5x7.pdf.

Although fatigue, diarrhea, pruritis, rash and nausea are not uncommon, more severe grade (3 or 4) irAEs may also occur (Figure). The most frequent grade 3 or 4 irAEs are diarrhea and colitis; elevated ALT or AST are also reported, particularly when CPIs are used in combination. Hypophysitis, thyroiditis, adrenal insufficiency, pneumonitis, enteritis sparing the colon with small bowel obstruction, and hematologic and neurologic toxicities may also occur.

Generally, skin and GI toxicities appear first, within a few weeks of therapy, followed by hepatitis and endocrinopathies which usually present between weeks 12 and 245. High suspicion and early diagnosis is key to successful management of irAEs.

Figure. Selected irAEs associated with nivolumab and ipilimumab (adapted from reference 1).

chceky2

References

  1. Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23-34.
  2. Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373:1627-1639.
  3. Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 2015; 373:123-135.
  4. Weber JS, Yang JC, Atkins MB, Disis ML. Toxicities of immunotherapy for the practitioner. J Clin Oncol 2015;33:2092-2099.
  5. Weber JS. Practical management of immune-related adverse events from immune checkpoint protein antibodies for the oncologist. Am Soc Clin Oncol Educ Book. 2012:174-177.

Contributed by Kerry Reynolds, MD, Mass General Hospital, Boston.

 

 

 

 

What complications should I look for in my hospitalized patient suspected of having check-point inhibitor toxicity?

My patient with recent Clostridium difficile infection (CDI) needs a gastric acid-suppressant. Are histamine2-receptor antagonists (H2RAs) associated with CDI?

Although proton pump inhibitors (PPIs) have received much attention for their link with CDI, H2RAs have also been associated with CDI.  In a study of CDI among hospitalized patients, H2RA was associated with CDI (O.R. 1.53, 95% CI, 1.12-2.10); for daily PPI use the O.R. was 1.74 (95% CI, 1.39-2.18)1.  

A meta-analysis in 2013 reported an overall O.R. of 1.44 (95% CI 1.22-1.7) for CDI in patients treated with H2RAs2.  The estimated number needed to harm with H2RAs at 14 days after hospital admission was 58 for patients on antibiotics vs 425 for those not receiving antibiotics2.

Potential mechanism for H2RA-associated CDI is unclear, but survival of acid-sensitive vegetative forms of C. difficile in the stomach and their enhanced growth in the presence of bile salts related to gastro-esophageal reflux disease have been postulated2.

In brief, gastric acid suppression with H2RAs may increase the risk of CDI in hospitalized patients. 

 

References

  1. Howell MD Novack V, Grgurich P, et al. Iatrogenic gastric acid suppression and the risk of nosocomial Clostridium difficile infection. Arch Intern Med 2010; 170:784-790.
  2. Tleyjeh IM, Bin Abdulhak AA, Riaz M, et al. The association between histamine 2 receptor antagonist use and Clostridium difficile infection: a systematic review and meta-analysis. PLoS ONE 2013; 8:e56498.
My patient with recent Clostridium difficile infection (CDI) needs a gastric acid-suppressant. Are histamine2-receptor antagonists (H2RAs) associated with CDI?