Is cefepime an acceptable alternative to carbapenems in the treatment of cefepime susceptible extended spectrum beta-lactamase (ESBL) Gram-negatives?

Irrespective of in-vitro susceptibility results, cefepime should be avoided in the treatment of serious ESBL infections associated with bacteremia, pneumonia, intraabdominal infection, endocarditis, bone/joint infection or whenever a high bacterial inoculum is suspected. Cefepime should be considered only in non-severe infections (eg, uncomplicated urinary tract infection) when the minimum inhibitory concentration (MIC) is 2 mg/L or less (1).

 

To date, clinical studies comparing cefepime vs carbapenem have been small and/or retrospective, often with conflicting results (1). A 2016 propensity score-matched study of patients with ESBL bacteremia receiving cefepime therapy followed by carbapenem therapy vs carbapenem for the entire treatment duration found higher 14 day mortality in the cefepime group (41% vs 20% in the carbapenem group) (2).  Of note, 2 of the patients receiving cefepime who died were infected with an ESBL organism with MIC of 1 mcg/mL. 

 

Another study found cefepime to be inferior to carbapenem therapy in ESBL bacteremic patients with better outcome when cefepime MIC was 1 ug/m or less (3).

 

Two studies involving patients with ESBL UTIs found no significant difference between cefepime and carbapenem in clinical and microbiological response or in-hospital mortality, while another UTI study with a high rate of septic shock (33%) found that cefepime was inferior to carbapenem in clinical and microbiological response (2).

 

The diminished efficacy of cefepime for the treatment of ESBL infections may be related to its “inoculum effect” ie, marked increase in MIC with increased inoculum size compared to that used in standard laboratory susceptibility testing (1,4).   

 

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 

References

  1. Karaiskos I, Giamarellou H. Carbapenem-sparing strategies for ESBL producers: when and how. Antibiotics 2020;9,61. https://pubmed.ncbi.nlm.nih.gov/32033322/
  2. Wang R, Cosgrove S, Tschudin-Sutter S, et al. Cefepime therapy for cefepime-susceptible extended-spectrum beta-lactamase-producing Enerobacteriaceae bacteremia. Open Forum Infect Dis 2016. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4942761/
  3. Lee NY, Lee CC, Huang WH, et al. Cefepime therapy for monomicrobial bacteremia caused by cefepime-susceptible extended-spectrum beta-lactamase-producing Enterobacteriaceae: MIC matters. Clin Infect Dis 203;56:488-95. https://academic.oup.com/cid/article/56/4/488/351224
  4. Smith KP, Kirby JE. The inoculum effect in the era of multidrug resistance:minor differences in inoculum have dramatic effect on MIC determination. Antimicrob Agents Chemother 2018;62:e00433-18. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6105823/

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

Is cefepime an acceptable alternative to carbapenems in the treatment of cefepime susceptible extended spectrum beta-lactamase (ESBL) Gram-negatives?

My patient with diverticular bleed has now developed signs of bowel ischemia with abdominal pain and sepsis after transcatheter colic artery embolization. Is bowel ischemia common after embolization of lower gastrointestinal (GI) arteries?

It may be more common than we think! Reported rates of bowel ischemia following lower GI artery embolization have been as high as 22% (1,2). For this reason, it is prudent to closely monitor for signs of bowel ischemia and infection in patients who undergo embolization to control lower GI bleeding.

In some cases, ischemia of the bowel appears to be mild enough to be treated conservatively, while in other cases bowel infarction with surgical intervention has been necessary (1).  One case report described signs of infection (including fever, abdominal tenderness and leukocytosis) 2 days after arterial embolization in a patient who was treated conservatively (3), while another described “sepsis” 6 days post procedure with bowel wall ischemia requiring surgical resection (1). 

Bowel injury leading to a septic picture following embolization of lower GI arteries should not be surprising given the expected capillary hypoperfusion and risk of tissue hypoxia.  Compared to embolization for upper GI bleed, lower GI embolization may place the patient at higher risk of bowel ischemia bowel ischemia due to lack of a rich collateral blood supply (1).  Older patients may also have mesenteric artery atherosclerotic disease or low cardiac output,  further compromising the collateral blood flow (3).  

At a more molecular level, hypoxia leads to the activation of hypoxia-inducible factor (HIF-1), which plays an important role in inducing gut injury. In fact, deletion of HIF-1a in mice prevented shock-induced intestinal permeability and bacterial translocation that ultimately led to bacteremia (4). 

As for preventing embolization-induced bacteremia, although antibiotics are used for liver and spleen embolization prophylaxis, their role in colic angioembolization is unclear (5).  

Bonus Pearl: Did you know that some of the earliest angioembolizations were performed during the Vietnam War to stop bleeding from bullet injuries? (6)

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References:

  1. Gady, J, Reynolds, H., & Blum, A. Selective arterial embolization for control of lower gastrointestinal bleeding: Recommendations for a clinical management pathway. Current Surg 2003; 60: 344-347. https://www.sciencedirect.com/science/article/abs/pii/S0149794402007493
  2. Rossetti A, Buchs NC, Breguet R, et al. Transarterial embolization in acute colonic bleeding: review of 11 years of experience and long-term results. Int J Colo Dis 2013;28:777-782. https://link.springer.com/article/10.1007/s00384-012-1621-5
  3. Shenoy, S, Satchidanand, S, & Wesp S. Colonic ischemic necrosis following therapeutic embolization. Gastrointest Radiol 1981, 6: 235-237. https://link.springer.com/article/10.1007/BF01890256
  4. Vollmar, B., & Menger, M. Intestinal ischemia/reperfusion: Microcirculatory pathology and functional consequences. Langenbeck Arch Surg 2011; 396: 13-29 https://link.springer.com/article/10.1007%2Fs00423-010-0727-x 
  5. Ryan, J. Mark, Ryan, Barbara M, & Smith, Tony P. Antibiotic prophylaxis in interventional radiology. JVIR 2004; 15: 547-556. https://www.sciencedirect.com/science/article/pii/S1051044307603248
  6. Nolan, T, Phan H, Hardy A, et al. Bullet embolization: Multidisciplinary approach by interventional radiology and surgery. Semin Interven Radiol 2012, 29: 192-6. https://www.ncbi.nlm.nih.gov/pubmed/23997411 

Contributed by Hannah Ananda Bougleux Gomes, Medical Student, Harvard Medical School, Boston, MA.

My patient with diverticular bleed has now developed signs of bowel ischemia with abdominal pain and sepsis after transcatheter colic artery embolization. Is bowel ischemia common after embolization of lower gastrointestinal (GI) arteries?

How long should I treat my patient with urinary tract infection and E. Coli bacteremia?

Although traditionally 7 to 14 days of antibiotic therapy has been recommended for Gram-negative bacteremia, more recent studies suggest that shorter antibiotic treatment courses are as effective as longer treatments for a variety of infections, particuarly those due to Enterobacteriaceae (eg, E. Coli, Klebsiella sp) in patients with low severity illness (1). 

Keep in mind that short course therapy may not apply to all patients with UTI and bacteremia, such as those with prostatitis (not included in the most recent study [1,2]), which requires longer course of antibiotics (3)

 
A 2019 randomized-controlled study involving primarily patients with bacteremia caused by E. Coli or Klebsiella sp. (~75%) with most cases associated with UTI (~70%) found that 7 days was as effective as 14 days of treatment in hemodynamically stable patients who are afebrile for at least 48 hours without an ongoing focus of infection (1). More specifically, there was no significant difference between the 2 groups in the rates of relapse of bacteremia or mortality at 14 or 28 days.

 
An accompanying editorial concluded that “7 days of treatment may be sufficient for hospitalized, non-critically ill patients with Gram-negative bacteremia and with signs of early response to treatment” (4)  Again, the accent should be on hemodynamically stable patients who respond rapidly to treatment. 

 
Bonus Pearl: While on the subject of shorter course antibiotic therapy, a 2016 “mantra” article nicely summarizes more recent suggestions for common infectious disease conditions (5). Obviously, clinical judgment should be exercised in all cases.
• Community-acquired pneumonia                               3-5 days (vs 7-10 days)
• Nosocomial pneumonia                                                 8 days or less (vs 10-15 days)
• Pyelonephritis                                                                  5-7 days (vs 10-14 days)
• Intraabdominal infection                                             4 days (vs 10 days)
• COPD acute exacerbation                                             5 days or less (vs >6 days)
• Acute bacterial sinusitis                                               5 days (vs 10 days)
• Cellulitis                                                                            5-6 days (vs 10 days)

 

 

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References
1. Yahav D, Franceschini E, Koppel F, et al. Seven versus 14 days of antibiotic therapy for uncomplicated Gram-negative bacteremia: A noninferiority randomized controlled trial. Clin Infect Dis 2019; 69:1091-8. https://academic.oup.com/cid/article/69/7/1091/5237874       2. Yahav D, Mussini C, Leibovici L, et al. Reply to “Should we treat bacteremic prostatitis for 7 days”.  Clin Infect Dis 2010;70:751-3. DOI:10:1093/cid/ciz393.

3.  De Greef J, Doyen L, Hnrard S, et al. Should we treat bacteremic prostatitis for 7 days? Clin Infect Dis 2020;70:351https://academic.oup.com/cid/article-abstract/70/2/351/5488067?redirectedFrom=fulltext
4. Daneman D, Fowler RA. Shortening antibiotic treatment durations for bacteremia. Clin Infect Dis 2019;69:1099-1100. https://academic.oup.com/cid/article-abstract/69/7/1099/5237877?redirectedFrom=fulltext
5. Spellberg B. The new antibiotic mantra: “ Shorter is better”. JAMA Intern Med 2016;176:1254-55. https://jamanetwork.com/journals/jamainternalmedicine/article-abstract/2536180

How long should I treat my patient with urinary tract infection and E. Coli bacteremia?

Should I choose a bactericidal over bacteriostatic antibiotic in the treatment of my patient with pneumonia complicated by bacteremia?

You don’t have too!  Although “bacteriostatic” antibiotics have traditionally been regarded as inferior to “bactericidal” antibiotics in the treatment of serious infections, a 2018 “myth busting” systemic literature review1 concluded that bacteriostatic antibiotics are just as effective against a variety of infections, including pneumonia, non-endocarditis bacteremia, skin and soft tissue infections and genital infections; no conclusion can be made in regards to endocarditis or bacterial meningitis, however, due insufficient clinical evidence.1-3

Interestingly, most of the studies included in the same systemic review showed that bacteriostatic antibiotics were more effective compared to bactericidal antibiotics.1 So, for most infections in hospitalized patients, including those with non-endocarditis bacteremia, the choice of antibiotic among those that demonstrate in vitro susceptibility should not be based on their “cidal” vs “static” label.

Such conclusion should not be too surprising since the definition of bacteriostatic vs bactericidal is based on arbitrary in vitro constructs and not validated by any available in vivo data. In addition, static antibiotics may kill bacteria as rapidly as cidal antibiotics in vitro at higher antibiotic concentrations.3

Another supportive evidence is a 2019 study finding similar efficacy of sequential intravenous-to-oral outpatient antibiotic therapy for MRSA bacteremia compared to continued IV antibiotic therapy despite frequent use of bacteriostatic oral antibiotics (eg, linezolid, clindamycin and doxycycline). 4

 

References

  1. Wald-Dickler N, Holtom P, Spellberg B. Busting the myth of “static vs cidal”: as systemic literature review. Clin Infect Dis 2018;66:1470-4. https://academic.oup.com/cid/article/66/9/1470/4774989
  2. Steigbigel RT, Steigbigel NH. Static vs cidal antibiotics. Clin Infect Dis 2019;68:351-2. https://academic.oup.com/cid/article-abstract/68/2/351/5067395
  3. Wald-Dickler N, Holtom P, Spellberg B. Static vs cidal antibiotics; reply to Steigbigel and Steigbigel. Clin Infect Dis 2019;68:352-3. https://academic.oup.com/cid/article-abstract/68/2/352/5067396?redirectedFrom=fulltext
  4. Jorgensen SCJ, Lagnf AH, Bhatia S, et al. Sequential intravenous-to-oral outpatient antbiotic therapy for MRSA bacteraemia: one step closer.  J Antimicrob Chemother 2019;74:489-98.  https://www.ncbi.nlm.nih.gov/pubmed/30418557

 

If you liked this post, sign up under MENU and get future pearls straight into your mailbox!

Should I choose a bactericidal over bacteriostatic antibiotic in the treatment of my patient with pneumonia complicated by bacteremia?

My hospitalized patient with pneumonia has now suffered an acute myocardial infarction (MI). Can acute infection and MI be related?

Yes! Ample epidemiological studies implicate infection as an important risk factor for MI.1 The increased risk of MI has been observed during the days, weeks, months or even years following an infection.

A 2018 paper reported a several-fold risk of MI during the week after laboratory-confirmed infection caused by a variety of respiratory pathogens such as influenza virus (6-fold), respiratory syncytial virus (4-fold), and other respiratory viruses (3-fold). 2 Among patients hospitalized for pneumococcal pneumonia, 7-8% may suffer an MI.3,4 One study found a 48-fold increase in the risk of MI during the first 15 days after hospitalization for acute bacterial pneumonia.5 Similarly, an increase in the short-term risk of MI has been observed in patients with urinary tract infection and bacteremia.6

The risk of MI appears to be the highest at the onset of infection and correlates with the severity of illness, with the risk being the highest in patients with pneumonia complicated by sepsis, followed by pneumonia and upper respiratory tract infection. Among patients with pneumonia, the risk exceeds the baseline risk for up to 10 years after the event, particularly with more severe infections.1

Potential mechanisms of MI following infections include release of inflammatory cytokines (eg, interleukins 1, 6, tumor necrosis factor alpha) causing activation of inflammatory cells in atherosclerotic plaques, in turn resulting in destabilization of the plaques. In addition, the thrombogenic state of acute infections, platelet and endothelial dysfunction may increase the risk of coronary thrombosis at sites of plaque disruption beyond clinical resolution of the acute infection. 1

Liked this post? Download the app on your smartphone and sign up under MENU to get future pearls straight into your inbox, all for free!

 

References

  1. Musher DM, Abers MS, Corrales-Medina VF. Acute infection and myocardial infarction. N Engl J Med 2019;380:171-6. https://www.ncbi.nlm.nih.gov/pubmed/30625066
  2. Kwong JC, Schwartz KL, Campitelli MA, et al. Acute myocardial infarction after laboratory-confirmed influenza infection. N Engl J Med 2018;378:345-53. https://www.nejm.org/doi/full/10.1056/NEJMoa1702090
  3. Musher DM, Alexandraki I, Graviss EA, et al. Bacteremic and nonbacteremic pneumococcal pneumonia: a prospective study. Medicine (Baltimore) 2000;79:210-21. https://www.ncbi.nlm.nih.gov/pubmed/10941350
  4. Musher DM, Rueda Am, Kaka As, Mapara SM. The association between pneumococcal pneumonia and acute cardiac events. Clin Infect Dis 2007;45:158-65. https://www.ncbi.nlm.nih.gov/pubmed/17578773
  5. Corrales-Medina VF, Serpa J, Rueda AM, et al. Acute bacterial pneumonia is associated with the occurrence of acute coronary syndromes. Medicine (Baltimore) 2009;88:154-9. https://www.ncbi.nlm.nih.gov/pubmed/19440118
  6. Dalager-Pedersen M, Sogaard M, Schonheyder HC, et al. Risk for myocardial infarction and stroke after community-acquired bacteremia: a 20-year population-based cohort study. Circulation 2014;129:1387-96. https://www.ncbi.nlm.nih.gov/pubmed/24523433

 

My hospitalized patient with pneumonia has now suffered an acute myocardial infarction (MI). Can acute infection and MI be related?

Should I consider fosfomycin in the treatment of urinary tract infection in my male patient with suspected prostatitis?

Although fosfomycin (FM) has been approved by the FDA only for the treatment of uncomplicated urinary tract infection (UTI) in women, it may also have a role in the treatment of acute and chronic prostatitis among males given its favorable levels in the prostate tissue. 1-5

Despite lack of studies comparing the efficacy of FM with that of commonly used antibiotics for treatment of prostatitis, the potential utility of FM is supported by several reports of its efficacy in the treatment of prostatitis, including those caused by extended-spectrum beta-lactamase (ESBL)-producing gram-negative rods. 1,4-5

When considering FM for treatment of prostatitis, a higher dose than customary may be needed (3 g once daily, not every 48-72 h) . 4 Although the optimal duration of therapy with FM is unclear in this setting, 12-16 weeks of therapy was used in 2 patients with recurrent UTIs and prostatitis due to multi-drug resistant ESBL-positive E. coli. 4

Given its pharmacokinetics and lack of proven efficacy, avoid FM in pyelonephritis, perinephric abscess or UTI with bacteremia. 2

References

  1. Falagas ME, Vouloumanou EK, Samonis G, et al. Fosfomycin. Clin Microbiol Rev 2016;29:321-347. https://www.ncbi.nlm.nih.gov/pubmed/26960938
  2. Wankum M, Koutsari C, Gens K. Fosfomycin use. Pharmacy Times. November 30, 2017. https://www.pharmacytimes.com/publications/health-system-edition/2017/november2017/fosfomycin-use
  3. Cunha BA, Gran A, Raza M. Persistent extended-spectrum β-lactamase-positive Escherechia coli chronic prostatitis successfully treated with a combination of fosfomycin and doxycycline. International J Antimicrob Agents 2015;45:427-29. https://www.ncbi.nlm.nih.gov/pubmed/25662814
  4. Grayson ML, Macesic N, Trevillyan J, et al. Fosfomycin for treatment of prostatitis: new tricks for old dogs. Clin Infect Dis 2015;61:1141-3. https://www.ncbi.nlm.nih.gov/pubmed/26063723
  5. Falagas ME, Rafailidis PI. Fosfomycin: the current status of the drug. Clin Infect Dis 2015;61:1144-6. https://www.ncbi.nlm.nih.gov/pubmed/26063717
Should I consider fosfomycin in the treatment of urinary tract infection in my male patient with suspected prostatitis?

How can I tell if my febrile patient who uses IV drugs had cotton fever?

Although IV drug use (IVDU) is associated with febrile illness of numerous etiologies (eg, soft tissue infections, pneumonia, bacteremia, endocarditis), certain features of a febrile illness may be helpful in considering cotton fever (CF) as the cause.1-3

First, onset of fever—often associated with chills, shortness of breath, nausea, vomiting, headache, abdominal pain and myalgias—in CF is usually manifest within 10-30 minutes of drug injection. Second, infectious disease workup, including blood cultures and chest radiograph, are unrevealing despite clinical signs of systemic inflammatory response syndrome (SIRS), such as leukocytosis, tachypnea and tachycardia. Third, symptoms and clinical signs of inflammation usually resolve or improve within 6-12 h of onset (less commonly up to 24-48 h). Nevertheless, CF remains a diagnosis of exclusion.

As for the cause of CF, the most widely-held theory revolves around the endotoxin of Pentoea agglomerans (formerly Enterobacter agglomerans), a gram-negative rod that colonizes cotton plants. Since cotton is often used as a filter during injection of illicit substances, any endotoxin present in the cotton is also injected resulting in abrupt onset of a febrile illness. Of note, the toxin is water soluble and heating (often part of the preparation of the drug) enhances its toxic effect.3

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. Zerr AM, Ku K, Kara A. Cotton Fever: a condition self-diagnosed by IV drug users. JABFM 2016;29: 276-279.PDF
  2. Xie Y, Pope BA, Hunter AJ. Cotton fever: does the patient know best? J Gen Intern Med 31:442-4. PDF
  3. Torka P, Gill S. Cotton fever: an evanescent process mimicking sepsis in an intravenous drug abuser. J Emerg Med 2013;44:e385-e387. PDF
How can I tell if my febrile patient who uses IV drugs had cotton fever?

Should Aerococcus urinae growth from the urine of my elderly patient be considered a pathogen?

Although for many years Aerococcus urinae was considered a urinary contaminant, increasingly it is recognized as an emerging pathogen capable of causing not only urinary tract infection (UTI) but also secondary bacteremia and endocarditis, among others.1   

The proportion of patients with aerococcal bacteriuria with symptoms suggestive of UTI ranges from 55-98%.1 So A. urinae can no longer be assumed to be a contaminant, particularly in the presence of symptoms suggestive of UTI.

A. urinae UTI often affects the elderly (median age 79 y) and those with pre-existing urinary tract pathologies, such as prostatic hyperplasia, urethral stricture, renal calculi, and prior urinary tract surgery.2,3 Many patients also have underlying comorbidities such as diabetes, heart disease, dementia, and chronic renal failure.3

One clue to the presence of A. urinae in the urine is its particularly pungent odor reminiscent of that of patients with trimethylaminuria (fish odor syndrome).4

Once you decide you should treat A. urinae, keep in mind that it is NOT predictably susceptible to trimethoprim-sulfamethoxazole, fluoroquinolones, or fosfomycin!  Instead, consider penicillin, ampicillin, cephalosporin, or nitrofurantoin to which most strains are susceptible.5,6.

 

References

  1. Rasmussen M. Aerococcus: an increasingly acknowledged human pathogen. Clin Microbiol Infect 2016;22:22-27. https://www.ncbi.nlm.nih.gov/pubmed/26454061
  2. Tathireddy H, Settypalli S, Farrell JJ. A rare case of aerococcus urinae infective endocarditis. J Community Hosp Intern Med Perspectives 2017; 7:126-129. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5473194/
  3. Higgins A, Garg T. Aerococcus urinae: An emerging cause of urinary tract infection in older adults with multimordidity and urologic cancer. Urology Case Reports 2017;24-25. https://www.ncbi.nlm.nih.gov/pubmed/28435789
  4. Lenherr N, Berndt A, Ritz N, et al. Aerococcus urinae: a possible reason for malodorus urine in otherwise healthy children. Eur J Pediatr. 2014;173:1115-7 https://www.ncbi.nlm.nih.gov/pubmed/24913181
  5. Christensen JJ, Nielsen XC. Aerococcus urinae. Antimicrobe @ http://www.antimicrobe.orgb75.asp , accessed June 14, 2018.
  6. Dimitriadi D, Charitidou C, Pittaras T, et al. A case of urinary tract infection caused by Aerococcus urinae. J Bacteriol Mycol 2016; 2: 00041. https://pdfs.semanticscholar.org/a1cf/048d8444ce054ca9a332f7c2b4a218325ff6.pdf

 

Should Aerococcus urinae growth from the urine of my elderly patient be considered a pathogen?

My patient with cirrhosis and suspected infection has a normal serum C-reactive protein (CRP). Does cirrhosis affect CRP response to infection?

CRP is primarily synthesized by the liver mainly as a response to IL-6 production in inflammatory states1.  Lower CRP production may then be expected in cirrhotic patients with significant infections and several studies support this view2

In a particularly convincing study involving E. coli-infected patients with bacteremia, the median CRP level in cirrhotic patients was about 40% that of non-cirrhotic patients (62 mg/L vs 146 mg/L)3.  In another study involving bacteremic patients with or without liver dysfunction, median CRP level was about 60% that of  patients with preserved liver function (81 mg/L vs 139 mg/L)4

Some investigators have reported a cut-off CRP value of 9.2 mg/L as a possible screening test for bacterial infections in patients with cirrhosis with a sensitivity and specificity of 88% (AUROC 0.93)5.

Collectively, these data suggest that although CRP response may be diminished in patients with advanced liver disease and acute infection, its synthesis is still maintained.

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 References

  1. Pieri G, Agarwal B, Burroughs AK. C-reactive protein and bacterial infection in cirrhosis. Ann Gastroenterol 2014;27:113-20. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982625/pdf/AnnGastroenterol-27-113.pdf
  2. Ha YE, Kang C-I, Joo E-J, et al. Usefulness of C-reactive protein for evaluating clinical outcomes in cirrhotic patients with bacteremia. Korean J Intern Med 2011;26:195-200. http://pubmedcentralcanada.ca/pmcc/articles/PMC3110852/pdf/kjim-26-195.pdf
  3. Park WB1, Lee KD, Lee CS et al. Production of C-reactive protein in Escherichia coli-infected patients with liver dysfunction due to liver cirrhosis. Diagn Microbiol Infect Dis. 2005 Apr;51(4):227-30. https://www.ncbi.nlm.nih.gov/pubmed/15808312
  4. Mackenzie I, Woodhouse J. C-reactive protein concentrations during bacteraemia: a comparison between patients with and without liver dysfunction. Intensive Care Med 2006;32:1344-51. https://www.ncbi.nlm.nih.gov/pubmed/16799774
  5. Papp M, Vitalis Z, Altorjay I, et al. Acute phase proteins in the diagnosis and prediction of cirrhosis associated bacterial infection. Liver Int 2011;603-11. https://www.ncbi.nlm.nih.gov/pubmed/22145664

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

 

My patient with cirrhosis and suspected infection has a normal serum C-reactive protein (CRP). Does cirrhosis affect CRP response to infection?

Is treatment of pneumococcal pneumonia with bacteremia any different than pneumococcal pneumonia without bacteremia?

In the absence of disseminated infection such as meningitis or endocarditis, there is no convincing evidence that bacteremic pneumococcal pneumonia (BPP) requires either longer course of IV or oral antibiotics.

In fact, although previously thought to have a worse prognosis, recent data have failed to demonstrate any difference in time to clinical stability, duration of hospital stay or community-associated pneumonia (CAP)-related mortality with BPP when other factors such as patient comorbidities and severity of disease are also considered1,2

Although many patients with CAP receive 7-10 days of antibiotic therapy, shorter durations as little as 5 days may also be effective3,4.  Generally, once patients with BPP have stabilized on parenteral therapy, a switch to an appropriate oral antibiotic (eg, a β-lactam or a respiratory quinolone such as levofloxacin) can be made safely5

Although large randomized-controlled studies of treatment of BPP are not available, a cumulative clinical trial experience with levofloxacin for patients with BPP reported a successful clinical response in >90% of patients (median duration of therapy 14 d)6. Resistance to levofloxacin and failure of treatment in pneumococcal pneumonia (with or without bacteremia), however, has been rarely reported7.

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. Bordon J, Peyrani P, Brock GN. The presence of pneumococcal bacteremia does not influence clinical outcomes in patients with community-acquired pneumonia. Chest 2008;133;618-624.
  2. Cilloniz C, Torres A. Understanding mortality in bacteremic pneumococcal pneumonia. J Bras Pneumol 2012;38:419-421.
  3. Mandell LA, Wunderink RG, Anzueto A, et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 2007;44:S27-72.
  4. Shorr F, Khashab MM, Xiang JX, et al. Levofloxacin 750-mg for 5 days for the treatment of hospitalized Fine Risk Class III/IV community-acquired pneumonia patients. Resp Med 2006;100:2129-36.
  5. Ramirez JA, Bordon J. Early switch from intravenous to oral antibiotics in hospitalized patients with bacteremic community-acquired Streptococcus pneumonia pneumonia. Arch Intern Med 2001;161:848-50.
  6. Kahn JB, Bahal N, Wiesinger BA, et al. Cumulative clinical trial experience with levofloxacin for patients with community-acquired pneumonia-associated pneumococcal bacteremia. Clin Infect Dis 2004;38(supp 1):S34-42.
  7. Davidson R, Cavalcanti R, Brunton JL, et al. Resistance to levofloxacin and failure of treatment of pneumococcal pneumonia. N Engl J Med 2002;346:747-50.
Is treatment of pneumococcal pneumonia with bacteremia any different than pneumococcal pneumonia without bacteremia?