What changes should I consider in my treatment of hospitalized patients with community-acquired pneumonia (CAP) in light of the 2019 guidelines of the American Thoracic society (ATS) and Infectious Diseases Society of America (IDSA)?

Compared to 2007,1 the 2019 ATS/IDSA guidelines2 propose changes in at least 4 major areas of CAP treatment in inpatients, with 2 “Do’s” and 2 “Dont’s”:

  • Do select empiric antibiotics based on severity of CAP and risk factors for methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (see related pearl on P4P)
  • Do routinely treat CAP patients who test positive for influenza with standard CAP antibiotics
  • Don’t routinely provide anaerobic coverage in aspiration pneumonia (limit it to empyema and lung abscess) (see related pearl on P4P)
  • Don’t routinely treat CAP with adjunctive corticosteroids in the absence of refractory shock

β-lactam plus macrolide is recommended for both non-severe and severe CAP.  β-lactam plus respiratory fluoroquinolone is an alternative regime in severe CAP, though not endorsed as strongly as β-lactam plus macrolide therapy (low quality of evidence).  Management per CAP severity summarized below:

  • Non-severe CAP
    • β-lactam (eg, ceftriaxone, cefotaxime, ampicillin-sulbactam and newly-added ceftaroline) plus macrolide (eg, azithromycin, clarithromycin) OR respiratory fluoroquinolone (eg, levofloxacin, moxifloxacin)
    • In patients at risk of MRSA or P. aeruginosa infection (eg, prior isolation of respective pathogens, hospitalization and parenteral antibiotics in the last 90 days or locally validated risk factors—HCAP has been retired), obtain cultures/PCR
    • Hold off on MRSA or P. aeruginosa coverage unless culture/PCR results return positive.
  • Severe CAP
    • β-lactam plus macrolide OR β-lactam plus respiratory fluoroquinolone (see above)
    • In patients at risk of MRSA or P. aeruginosa infection (see above), obtain cultures/PCR
    • Add MRSA coverage (eg, vancomycin or linezolid) and/or P. aeruginosa coverage (eg, cefepime, ceftazidime, piperacillin-tazobactam, meropenem, imipenem) if deemed at risk (see above) while waiting for culture/PCR results

Duration of antibiotics is for a minimum of 5 days for commonly-targeted pathogens and a minimum of 7 days for MRSA or P. aeruginosa infections, irrespective of severity or rapidity in achieving clinical stability.

For patients who test positive for influenza and have CAP, standard antibacterial regimen should be routinely added to antiinfluenza treatment.

For patients suspected of aspiration pneumonia, anaerobic coverage (eg, clindamycin, ampicillin-sulbactam, piperacillin-tazobactam) is NOT routinely recommended in the absence of lung abscess or empyema.

Corticosteroids are NOT routinely recommended for non-severe (high quality of evidence) or severe (moderate quality of evidence) CAP in the absence of refractory septic shock.

Related pearls on P4P:

2019 CAP guidelines on diagnostics:                                        https://pearls4peers.com/2020/02/14/what-changes-should-i-consider-in-my-diagnostic-approach-to-hospitalized-patients-with-community-acquired-pneumonia-cap-in-light-of-the-2019-guidelines-of-the-american-thoracic-society-ats-and-inf/ 

Anerobic coverage of aspiration pneumonia: https://pearls4peers.com/2019/07/31/should-i-routinely-select-antibiotics-with-activity-against-anaerobes-in-my-patients-with-presumed-aspiration-pneumonia/

References

  1. Mandell LA, Wunderink RG, Anzueto A. Infectious Disease Society of America/American Thoracic Society Consensus Guidelines on the Management guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 2007;44:S27-72. https://www.ncbi.nlm.nih.gov/pubmed/17278083
  2. Metlay JP, Waterer GW, Long AC, et al. Diagnosis and treatment of adults with community-acquired pneumonia. Am J Respir Crit Care Med 2019;200:e45-e67. https://www.ncbi.nlm.nih.gov/pubmed/31573350

 

What changes should I consider in my treatment of hospitalized patients with community-acquired pneumonia (CAP) in light of the 2019 guidelines of the American Thoracic society (ATS) and Infectious Diseases Society of America (IDSA)?

How can I distinguish serotonin syndrome from neuroleptic malignant syndrome in my patient with fever and mental status changes?

Although there is often an overlap between the clinical presentation of serotonin syndrome (SS) and neuromuscular malignant syndrome (NMS), start out with the physical exam. The presence of hyperreflexia, tremors, clonus, hyperactive bowel sounds, and dilated pupils should make you think of SS, whereas hyporeflexia, “lead-pipe” rigidity in all muscle groups, normal pupils, and normal or decreased bowels sounds suggest NMS in the proper context.1-3 The most sensitive and specific sign of SS is clonus.1

Aside from physical exam findings, symptom onset in relation to the implicated drug may also be important. Onset of symptoms within 12-24 h of the initiation or change of an implicated drug suggests SS, whereas a more delayed onset (often 1-3 days) is more supportive of NMS.1-3  SS also tends to resolve within a few days after discontinuation of the offending agent, while NMS usually takes 9-14 days to resolve. 1-3 Although both SS and NMS can be associated with leukocytosis, elevated CK and low serum iron levels are more common in NMS.2

SS is caused by excess serotonin due to a variety of mechanisms—therefore medications— including inhibition of serotonin uptake ( eg, serotonin reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors, tricyclic antidepressants, metoclopramide, ondansetron), inhibition of serotonin metabolism (seen with monoamine oxidase inhibitors , including linezolid, methylene blue), increased serotonin release (eg stimulants, including amphetamines, cocaine), and activation of serotonin receptors (eg, lithium), among others. 2

As for medications that can cause NMS, look for neuroleptic agents (eg, haloperidol, olanzapine, quetiapine, risperidone), as well as antiemeics, such as metoclopramide and promethazine.2

 

Bonus Pearl: Did you know that several supplements/herbal products have been associated with serotonin syndrome, including L-tryptophan, St. John’s wort and ginseng?1

If you liked this post, download the apps for your smart phone and sign up

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 to catch future pearls straight into your inbox!

 

References

  1. Bienvenu OJ, Neufeld K, Needham DM. Treatment of four psychiatric emergencies in the intensive care unit. Crit Care Med 2012;40: 2662-70. https://insights.ovid.com/crossref?an=00003246-201209000-00017
  2. Turner AAH, Kim JJ, McCarron RM, et al. Differentiating serotonin syndrome and neuroleptic malignant syndrome. Current Psychiatry 2019;18: 36. https://www.mdedge.com/psychiatry/article/193418/schizophrenia-other-psychotic-disorders/differentiating-serotonin-syndrome
  3. Dosi R, Ambaliya A, Joshi H, et al. Serotonin syndrome versus neuroleptic malignant syndrome: a challenging clinical quandary. BMJ Case Rep 2014. Doi:10.1136/bcr-2014-204154. https://casereports.bmj.com/content/2014/bcr-2014-204154

 

How can I distinguish serotonin syndrome from neuroleptic malignant syndrome in my patient with fever and mental status changes?

Should I choose a bactericidal over bacteriostatic antibiotic in the treatment of my patient with pneumonia complicated by bacteremia?

You don’t have too!  Although “bacteriostatic” antibiotics have traditionally been regarded as inferior to “bactericidal” antibiotics in the treatment of serious infections, a 2018 “myth busting” systemic literature review1 concluded that bacteriostatic antibiotics are just as effective against a variety of infections, including pneumonia, non-endocarditis bacteremia, skin and soft tissue infections and genital infections; no conclusion can be made in regards to endocarditis or bacterial meningitis, however, due insufficient clinical evidence.1-3

Interestingly, most of the studies included in the same systemic review showed that bacteriostatic antibiotics were more effective compared to bactericidal antibiotics.1 So, for most infections in hospitalized patients, including those with non-endocarditis bacteremia, the choice of antibiotic among those that demonstrate in vitro susceptibility should not be based on their “cidal” vs “static” label.

Such conclusion should not be too surprising since the definition of bacteriostatic vs bactericidal is based on arbitrary in vitro constructs and not validated by any available in vivo data. In addition, static antibiotics may kill bacteria as rapidly as cidal antibiotics in vitro at higher antibiotic concentrations.3

Another supportive evidence is a 2019 study finding similar efficacy of sequential intravenous-to-oral outpatient antibiotic therapy for MRSA bacteremia compared to continued IV antibiotic therapy despite frequent use of bacteriostatic oral antibiotics (eg, linezolid, clindamycin and doxycycline). 4

 

References

  1. Wald-Dickler N, Holtom P, Spellberg B. Busting the myth of “static vs cidal”: as systemic literature review. Clin Infect Dis 2018;66:1470-4. https://academic.oup.com/cid/article/66/9/1470/4774989
  2. Steigbigel RT, Steigbigel NH. Static vs cidal antibiotics. Clin Infect Dis 2019;68:351-2. https://academic.oup.com/cid/article-abstract/68/2/351/5067395
  3. Wald-Dickler N, Holtom P, Spellberg B. Static vs cidal antibiotics; reply to Steigbigel and Steigbigel. Clin Infect Dis 2019;68:352-3. https://academic.oup.com/cid/article-abstract/68/2/352/5067396?redirectedFrom=fulltext
  4. Jorgensen SCJ, Lagnf AH, Bhatia S, et al. Sequential intravenous-to-oral outpatient antbiotic therapy for MRSA bacteraemia: one step closer.  J Antimicrob Chemother 2019;74:489-98.  https://www.ncbi.nlm.nih.gov/pubmed/30418557

 

If you liked this post, sign up under MENU and get future pearls straight into your mailbox!

Should I choose a bactericidal over bacteriostatic antibiotic in the treatment of my patient with pneumonia complicated by bacteremia?