Is there an association between Covid-19 and subsequent development of hypertension?

Although far from definite, emerging evidence suggests that adults with recently diagnosed Covid-19 are at increased risk of newly-diagnosed hypertension following the acute infection.1-4

A retrospective cohort study involving a large national healthcare data base of the Department of Veterans Affairs found that, at a median follow-up of 126 days, Covid-19 survivors had an excess burden of newly-diagnosed hypertension (15/1000 patients) and were at higher risk of initiation of antihypertensive drugs compared to controls.2

Another retrospective cohort study involving over 80,000 adults 65 years or older (median follow-up 56 days) found an increased risk of newly-diagnosed hypertension (O.R. 4.4; 95% C.I. 2.27-6.37) in the Covid-19 group. 3  Even in a younger population (18-65 years of age), the same investigators found a significant increase (81%; 95% C.I. 10-196%) in the risk of newly diagnosed hypertension in the Covid-19 group compared to that of the control cohort. 4  

Despite the inherent limitations in these retrospective studies, a cause-and-effect relationship between Covid-19 and subsequent diagnosis of hypertension is plausible given the known affinity of SARS-CoV-2 for ACE2 receptors and endothelial cells. 5   Of interest, hyperreninemia associated with reduced glomerular filtration rate has been reported in some patients with Covid-19 requiring prolonged intensive care. 6

Bonus Pearl: Did you know that Covid-19 survivors have also been reported to have an increased risk of stroke, transient ischemic attack, ischemic heart disease, pericarditis, myocarditis, heart failure, dysrhythmia, and thromboembolic disease, independently of pre-existing hypertension and other cardiovascular risk factors? 7

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 

References

  1. Shibata S, Kobayashi K, Tanaka M, et al. Covid-19 pandemic and hypertension: an updated report from the Japanese Society of Hypertension project team on Covid-19. Hypertens Res 2022 Dec 23:1-12. COVID-19 pandemic and hypertension: an updated report from the Japanese Society of Hypertension project team on COVID-19 – PMC (nih.gov)
  2. Al-Aly Z, Xie Y, Bowe B. High-dimensional characterization of post-acute sequelae of Covid-19. Nature 2021;594:259-64. High-dimensional characterization of post-acute sequelae of COVID-19 – PubMed (nih.gov)
  3. Daugherty SE, Guo Y, Health K, et al. Risk of clinical sequelae after the acute phase of SARS-CoV-2 infection: retrospective cohort study. BMJ 2021;373:n1098. Risk of clinical sequelae after the acute phase of SARS-CoV-2 infection: retrospective cohort study | The BMJ
  4. Guney C, Akar F. Epithelial and endothelial expressions of ACE2:SARS-CoV-2 Entry Routes.  J Pharm Pharm Sci 2021;24:84-98 Epithelial and Endothelial Expressions of ACE2: SARS-CoV-2 Entry Routes – PubMed (nih.gov)
  5. Cohen K, Ren S, Health K, et al. Risk of persistent and new clinical sequelae among adults aged 65 years and older during the post-acute phase of SARS-CoV-2 infection: retrospective cohort study. BBMJ 2022;376:e068414. Risk of persistent and new clinical sequelae among adults aged 65 years and older during the post-acute phase of SARS-CoV-2 infection: retrospective cohort study – PubMed (nih.gov) 
  6. Hulstom M, von Seth M, Frithiof R. Hyperreninemia and low total body water may contribute to acute kidney injury in coronavirus disease 2019 patients in intensive care. J Hypertens 2020 May 28. Hyperreninemia and low total body water may contribute to acute kidney injury in corona virus disease 2019 patients in intensive care – PMC (nih.gov)
  7. Xie Y, Xu E, Bowe B, et al. Long-term cardiovascular outcomes of Covid-19. Nat med 2022;28:583-90. Long-term cardiovascular outcomes of COVID-19 – PMC (nih.gov)

 

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Mercy Hospital-St. Louis, Massachusetts General Hospital, Harvard Catalyst, Harvard University, their affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

Is there an association between Covid-19 and subsequent development of hypertension?

Can I estimate the central venous pressure (CVP) of my patient with dyspnea at the bedside by using point of care ultrasound (POCUS)?

Absolutely! Not only can POCUS be used to estimate the CVP by measuring the jugular venous pressure (JVP), it may also be more reliable than the traditional—often challenging—visual method of looking for internal jugular (IJ) waveforms in the neck.1

To estimate the CVP by POCUS, first position the patient in a comfortable (usually semi-recumbent) position.   Select “vascular” (ie, high frequency) setting on your device (linear array probe for traditional ultrasound devices).  With the probe in the transverse plane (ie,  perpendicular to the IJ) and the orientation marker pointing to the right of the patient, slowly slide the probe cranially until the IJ appears to collapse during end-expiration, a point commonly referred to as the “meniscus” (CLIP 1 below). Measure the vertical distance between the meniscus and the sternal angle and, just as you would using the traditional method, add 5 cm (see limitation below) to calculate the height of the JVP, with values > 8 cm considered elevated (Figure 1 below).1,2,3

You can also look for the point of JVP collapse in the longitudinal axis by rotating the transducer 90° clockwise (CLIP 2 below).  Here, the shape of the IJ resembles a wine bottle with the collapsed portion or the tip of the tapered portion or triangle, representing the meniscus.3

A major limitation of estimating the CVP by visualization of JVP or by POCUS is the assumption that the distance between the right atrium and the sternal angle is constant at 5 cm.  It turns out that this distance may potentially vary among patients depending on their body habitus and position.4    A cool study from 2015, however, more accurately determined this distance by adjusted ultrasound views of the center of the right atrium. 5    Clearly, bedside estimation of CVP by POCUS will continue to be refined in the future. 

Bonus Pearl: Did you know that the traditional non-invasive method of estimating CVP by examining neck veins was first proposed in 1930 by Sir Thomas Lewis, a British cardiologist, who has been called the “father of clinical cardiac electrophysiology” and coined the terms “pacemaker,” “premature contractions,” and “auricular fibrillation”?6,7

 

Clip 1. Transverse visualization of the internal jugular vein (IJV) by using POCUS. The meniscus is the point of IJV collapse during end-expiration. 

 

Figure 1. Measurement of the jugular venous pressure (JVP) by POCUS. Add 5 cm (green arrow) to the distance between the meniscus (internal jugular collapse on the transverse view or tip of the tapering zone on the longitudinal view) and the sternal angle (red arrow).

Clip 2. Longitudinal visualization of the internal jugular vein (IJV) by using POCUS. The meniscus is the tip of the tapering zone or triangle of the IJV. 

 

 

 

Contributed by Woo Moon D.O., Mercy Hospital, St. Louis, Missouri

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

1. Wang L, Harrison J, Dranow E, Aliyev N, Khor L. Accuracy of ultrasound jugular venous pressure height in predicting central venous congestion. Ann Intern Med 2021; 175:344-51.

2. McGee MD S. Evidence-Based Physical Diagnosis. 5th ed. Philadelphia: Elsevier; 2021.

3. Lipton B. Estimation of central venous pressure by ultrasound of the internal jugular vein. Am J Emerg Med 2000;18(4):432–4.

4. Istrail, L. POCUS and the jugular venous pressure: A deep dive. POCUS Med Ed, November 12. 2021. POCUS and the Jugular Venous Pressure: A Deep Dive (pocusmeded.com)

5. Xing C-Y, Liu Y-L, Zhao M-L, et al. New method for nonivasive quantification of central venous pressure by ultrasound. Circulation: Cardiovascular Imaging 2015;8/ https://doi.org/10.116/CIRCIMAGING.114.003085. New Method for Noninvasive Quantification of Central Venous Pressure by Ultrasound (ahajournals.org)

6. Sir Thomas Lewis – the Father of clinical cardiac electrophysiology | SciHi Blog [Internet]. [cited 2023 Feb 2]; Available from: http://scihi.org/thomas-lewis-cardiac-electrophysiology/

7. Lewis T. Remarks on early signs of cardiac failure of the congestive type. Br Med J 1930;1(3618):849–52.

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Mercy Hospital-St. Louis, Massachusetts General Hospital, Harvard Catalyst, Harvard University, their affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

Can I estimate the central venous pressure (CVP) of my patient with dyspnea at the bedside by using point of care ultrasound (POCUS)?