“I go after Streptococcus pneumoniae and many other bacteria causing community-acquired pneumonia with vengeance but lately I have had a hard time keeping up with many gram-negatives, including some E. coli. Who am I?”

Additional hint: “The latest FDA warning against the use of my class of drugs has to do with increased risk of ruptures or tears in the aorta in certain patients, including the elderly and those with hypertension, aortic aneurysm or peripheral vascular disease.” 

Editor’s note: This post is part of the P4P “Talking Therapeutics” series designed to make learning about antibiotics fun. Individual antibiotics give a short description of themselves and you are asked to guess their names. Antimicrobial spectrum, common uses and potential adverse effects follow. Enjoy!

And the answer is…… HERE

Selected antimicrobial spectrum

                Gram-positives: Streptococcus pneumoniae, Staphylococcus aureus                         (some resistance even in MSSA), Enterococcus spp (urine;some resistance)

                Gram-negatives: Enterics (eg, E. coli, Klebsiella spp), Pseudomonas spp,                                 Stenotrophomonas maltophilia, H. influenzae, some ESBLs.

                 AVOID: MRSA, anaerobes

Common clinical uses: community-acquired pneumonia (CAP), healthcare-associated pneumonia (HAP), urinary tract infections (UTIs), legionnaire’s disease, abdominal infection (plus anaerobic coverage)

WATCH OUT! QT prolongation, C. difficile, central nervous system toxicity, seizures, myasthenia gravis, peripheral neuropathy, tendinopathy, drug interactions (eg. warfarin), and most recently aortic aneurysm diagnosis/dissection!

Remember the key features of levofloxacin before you prescribe it!

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Selected references

  1. FDA. FDA warns about increased risk of ruptures or tears in the aorta blood vessel with fluoroquinolone antibiotics in certain patients.  https://www.fda.gov/drugs/drug-safety-and-availability/fda-warns-about-increased-risk-ruptures-or-tears-aorta-blood-vessel-fluoroquinolone-antibiotics. Accessed Nov 26, 2020,.
  2. Marangon FB, Miller D, Muallem MS, et al. Ciprofloxacin and levofloxacin resistance among methicillin-sensitive Staphylococcus aureus isolates from keratitis and conjunctivitis. Am J Ophthal 2004;137:453-58. https://www.ajo.com/article/S0002-9394(03)01287-X/pdf
  3. Yasufuku T, Shigemura K, Shirakawa T, et al. Mechanisms of and risk factors for fluoroquinolone resistance in clinical Enterococcus faecalis from patients with urinary tract infections. J Clin Microbiol 2011;49:3912-16. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3209098/
  4.  Rawla P, Helou MLE, Vellipuram AR. Fluoroquinolones and the risk of aortic aneurysm or aortic dissection: A systematic review and meta-analysis. Cardiovasc Hematol Agents Med Chem 2019;17:3-10. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6865049/

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Mercy Hospital-St. Louis or its affiliate healthcare centers. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

“I go after Streptococcus pneumoniae and many other bacteria causing community-acquired pneumonia with vengeance but lately I have had a hard time keeping up with many gram-negatives, including some E. coli. Who am I?”

Is compression therapy for leg edema harmful in patients with congestive heart failure?

The evidence to date, albeit based on small non-randomized studies, suggests that compression therapy of lower extremities in stable patients with congestive heart failure (CHF) is not associated with clinical deterioration, while more studies are needed to evaluate its safety in advanced classes of CHF (NYHA III and IV). The theoretical concern is that by mobilizing fluid from lower extremities, compressive therapy could lead to worsening pulmonary edema in patients with less stable CHF. 1,2

A study of subjects with NYHA II CHF wearing compression stockings found a significant increase in human atrial natriuretic peptide (hANP) in patients with known heart disease but the rise was only transient and not accompanied by hemodynamic changes or clinical deterioration.3 Similar findings have been reported by studies involving patients with NYHA III and IV CHF involving compressive therapy which demonstrated no clinically significant deleterious effects. 4-5

Nevertheless, isolated reports of acute pulmonary edema following compressive therapy in the literature, 6,7 and the theoretical concern raised above have often led to recommendations against the use of CT in patients with advanced CHF. 1,2 We clearly need more studies to evaluate the risks vs benefits of CT in patients with CHF.

Bonus Pearl: Did you know that compressing the legs with pressures of 25 mm Hg and 50 mm Hg can reduce the blood volume in legs by 33% and 38%, respectively? 2

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. Urbanek T, Jusko M, Kuczmik WB. Compression therapy for leg oedema in patients with heart failure. ESC Heart Failure 2020;7:2012-20. https://onlinelibrary.wiley.com/doi/10.1002/ehf2.12848
  2. Hirsch T. Oedema drainage and cardiac insufficiency—When is there a contraindication for compression and manual lymphatic drainage? Phlebologie 2018;47:115-19. https://www.thieme-connect.de/products/ejournals/pdf/10.12687/phleb2420-3-2018.pdf?articleLanguage=en
  3. Galm O, Jansen-Genzel W, von Helden J, et al. Plasma human atrial natriuretic peptide under compression therapy in patients with chronic venous insufficiency with or without cardiac insufficiency. Vasa 1996;25:48-53. https://pubmed.ncbi.nlm.nih.gov/8851264/
  4. Wilputte F, Renard M, Venner J, et al. Hemodynamic response to multilayered bandages dressed on a lower limb of patients with heart failure. Eur J Lymphology 2005;15:1-4. https://www.researchgate.net/profile/Olivier_Leduc/publication/287602727_Hemodynamic_response_to_multilayered_bandages_dressed_on_a_lower_limb_of_patients_with_heart_failure/links/5704dff008ae44d70ee12eb5/Hemodynamic-response-to-multilayered-bandages-dressed-on-a-lower-limb-of-patients-with-heart-failure.pdf?origin=publication_detail
  5. Leduc O, Crasset V, Leleu C, et al. Impact of manual lymphatic drainage on hemodynamic parameters in patients with heart failure and lower limb edema. Lymphology 2011;44:13-20. https://pubmed.ncbi.nlm.nih.gov/21667818/
  6. Vaassen MM. Manual lymph drainage in a patient with congestive heart failure: a case study. Ostomy Wound Management 2015;61:38-45. https://www.o-wm.com/article/manual-lymph-drainage-patient-congestive-heart-failure-case-study
  7. McCardell CS, Berge KH, Ijaz M, et al. Acute pulmonary edema associated with placement of waist-high, custom fit compression stockings. Mayo Clin Proc 1999;74:478-480. https://www.mayoclinicproceedings.org/article/S0025-6196(11)64822-2/fulltext

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Mercy Hospital-St. Louis or its affiliate healthcare centers. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

Is compression therapy for leg edema harmful in patients with congestive heart failure?

How effective are face masks in reducing transmission of Covid-19?

Overall, review of data to date suggests that face masks are quite effective in reducing the transmission of coronaviruses, including SARS-CoV-2, the cause of Covid-19. A Lancet 2020 meta-analysis involving over 12,000 subjects, found that transmission of coronaviruses (SARS-CoV-2, SARS and MERS) was reduced with face masks by 85% (adjusted O.R. 0.15, 95%CI 0.07-0.34).1

More specific to Covid-19, a study from Mass General Brigham hospitals found a significant drop in healthcare worker (HCW) SARS-CoV-2 PCR positivity rate from 21.3% to 11.5% following adoption of universal masking of HCWs and patients.2

An U.S. epidemiologic survey of 2,930 unique counties plus New York City found mandating face mask use in public was associated with a significant decline in the daily Covid-19 growth rate. 3 It was estimated that more than 200,000 Covid-19 cases were averted by May 22, 2020 as a result of the implementation of these mandates.

Another 2020 meta-analysis involving 21 studies reported an overall efficacy of masks (including surgical and N-95 masks) of 80% in healthcare workers and 47% in non-healthcare workers for respiratory virus transmission (including SARS, SARS-CoV-2 and influenza).4

A criticism of above reports has been their primarily retrospective nature. A randomized-controlled Danish study found a statistically insignificant 20% reduction in incident SARS-CoV-2 infection among mask wearers (5,6).    Despite its randomized-controlled design, this study had several limitations, including relatively low transmission rate in the community and lack of universal mask wearing in public during the study period. In addition, less than one-half of participants in the mask group reported adherence to wearing masks, and there was no assurance that masks were worn correctly when they did wear them. 

At most, this study suggests that it’s not enough for the uninfected to wear masks; the infected—often with little or no symptoms— should also wear them to help curb the pandemic.

So please do your part and tell your friends and family members to do the same by masking up while we are at war with Covid-19!

Bonus Pearl: Did you know that universal wearing of masks in the public in response to a respiratory virus pandemic is nothing new?  It was adopted as far back as 100 years ago during the 1918 Spanish influenza pandemic!

References

  1. Chu DK, Akl EA, Duda S, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet 2020;395: 1973-87. https://www.thelancet.com/pdfs/journals/lancet/PIIS0140-6736(20)31142-9.pdf
  2. Wang X, Ferro EG, Zhou G, et al. Association between universal masking in a health care system and SARS-CoV-2 positivity among health care workers. JAMA 2020;324:703-4. https://jamanetwork.com/journals/jama/fullarticle/2768533
  3. Lyu W, Wehby GL. Community use of face masks and COVID-19: evidence from a natural experiment of state mandates in the US. Health Affairs 2020;39: July 16. https://www.healthaffairs.org/doi/full/10.1377/hlthaff.2020.00818
  4. Liang M, Gao L, Cheng Ce, et al. Efficacy of face mask in preventing respiratory virus transmission: A systematic review and meta-analysis. Travel Med Infect Dis 2020;36:1-8. https://pubmed.ncbi.nlm.nih.gov/32473312/ 
  5. Bundgaard H, Bundgaard JS, Tadeusz DE, et al. Effectiveness of adding a mask recommendation to other public health measures to prevent SARS-CoV-2 infection in Danish mask wearers. Ann Intern Med 2020; November 18. https://pubmed.ncbi.nlm.nih.gov/33205991/
  6. Frieden TR Cash-Goldwasser S. Of masks and methods. Ann Intern Med 2020; November 18. https://www.acpjournals.org/doi/10.7326/m20-7499

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Mercy Hospital-St. Louis or its affiliate healthcare centers. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

How effective are face masks in reducing transmission of Covid-19?

What’s the connection between break rooms and transmission of Covid-19 in health care settings?

Emerging data suggest that healthcare workers (HCWs) may be at increased risk of Covid-19 in break rooms when consuming food or when in the presence of others without a mask.1-4

In a study of over 700 HCWs screened for SARS-CoV-2 by PCR at a university hospital, staying in the same personnel break room as an HCW without a medical mask for more than 15 min and consuming food within 1 meter of an HCW were significantly associated with SARS-CoV-2 infection.1 Consumption of food in break rooms by personnel was thereafter “forbidden” in this facility. Interestingly, 28% of infected personnel in this study lacked symptoms at the time of testing.

A recent outbreak at a Boston hospital involving both patients and HCWs months after institution of strict infection control measures (including universal masking of visitors and HCWs and PCR testing of all patients on admission) traced the outbreak to a variety of factors, including HCWs eating in crowded work rooms.2,3

A CDC study of risk factors among adults 18 years or older with Covid-19 in the community identified dining at a restaurant as significant risk factors for Covid-19.4

Transmission of SARS-CoV-2 during eating or drinking is not surprising because masks cannot be effectively worn during food consumption. Combine eating or drinking with talking, laughing and suboptimal ventilation system and we have all the elements of perfect storm for transmission of Covid-19 during food breaks.

Bonus Pearl: Did you know that, in addition to dining at a restaurant, patients with Covid-19 without known close contact with infected persons have reported higher likelihood of going to bar/coffee shop? 4

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

 

  1. Celebi G, Piskin N, Beklevic AC, et al. Specific risk factors for SARS-CoV-2 transmission among health care workers in a university hospital. Am J Infect Control 2020;48:1225-30. https://pubmed.ncbi.nlm.nih.gov/32771498/
  2. Freyer FJ. Brigham and Women’s hospital completes investigation of coronavirus outbreak. Boston Globe, October 19, 2020. https://www.bostonglobe.com/2020/10/19/metro/brigham-womens-hospital-completes-investigation-coronavirus-outbreak/
  3. Freyer FJ. At the Brigham, “battle-weary” staff may have allowed virus to slip in. Boston Globe, September 24, 2020. https://www.bostonglobe.com/2020/09/24/metro/brigham-womens-hospital-reports-cluster-10-covid-19-cases/
  4. Fisher KA, Tenforde MW, Felstein LR, et al. Community and close contact exposures associated with COVID-19 among symptomatic adults ≥18 years in 11 outpatient health care facilities—United States, July 2020. MMWR 2020;69:1258-64. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7499837/

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Mercy Hospital-St. Louis or its affiliates. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

 

 

What’s the connection between break rooms and transmission of Covid-19 in health care settings?

How long should I expect Legionella urine antigen test to remain positive after diagnosis of legionnaire’s disease in my patient with pneumonia?

The urine antigen test for detection of Legionnaire’s disease (LD) can remain positive for weeks or months after initial infection. So a positive test in a patient with pneumonia may not just be suggestive of an acute infection but also the diagnosis of LD during recent weeks or months (1,2).

In a study of Legionella urine antigen detection as a function of days after onset of symptoms, 11 of 11 (100%) patients tested remained positive after day 14 (1). In the same study, 10 of 23 (43%) patients excreted antigen for 42 days or longer following initiation of therapy, with some patients remaining positive for more than 200 days!

In another study involving 61 patients with Legionella pneumophila pneumonia, 25% excreted Legionella antigen for 60 or more days (2). Longer duration of antigen excretion was significantly associated with immunosuppressed patients in whom the time to resolution of fever was > 72 h.

The long duration of excretion of Legionella antigen in urine following LD is not surprising. Pneumococcal pneumonia has also been associated with prolonged antigen excretion, some for as long as 6 months after diagnosis of pneumonia (3). It is thought that some microbial polysaccharides may be degraded very slowly or not at all by mammalian tissues which could explain their prolonged appearance in the urine long after active infection has resolved (1).

Bonus pearl: Did you know that the sensitivity of Legionella urinary antigen for LD varies from 94% for travel-associated infections to 76%-87% for community-acquired infection, and to as low as ~45% for nosocomially-acquired infections (4)?

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. Kohler RB, Winn WC, Wheat J. Onset and duration of urinary antigen excretion in Legionnaires disease. J Clin Microbiol 1984;20:605-7. https://pubmed.ncbi.nlm.nih.gov/6490846/
  2. Sopena N, Sabria M, Pedro-Bolet ML, et al. Factors related to persistence of Legionella urinary antigen excretion in patients with legionnaire’s disease. Eur J Clin Microbiol Infect Dis 2002;21:845-48. https://europepmc.org/article/med/12525918
  3. Andreo F, Prat C, Ruiz-Manzano J, et al. Persistence of Streptococcus pneumoniae urinary antigen excretion after pneumococcal pneumonia. Eur J Clin Microbiol Infect Dis 2009;28:197-201. https://pubmed.ncbi.nlm.nih.gov/18830727/
  4. Helbig JH, Uldum SA, Bernander S, et al. Clinical utility of urinary antigen detection for diagnosis of community-acquired, travel-associated, and nosocomial Legionnaire’s disease. Clin Microbiol 2003;41:838-40. https://pubmed.ncbi.nlm.nih.gov/12574296/

 

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

How long should I expect Legionella urine antigen test to remain positive after diagnosis of legionnaire’s disease in my patient with pneumonia?

How might measuring viral load in respiratory specimens be helpful clinically in patients with Covid-19?

Although far from being perfect, there are emerging scientific data that suggest measuring viral load in respiratory specimens of patients with Covid-19 could be helpful in at least 2 ways: 1. Help determine who may be infectious (therefore isolated or undergo contact tracing); and 2. Identify patients at high risk for severe disease and death (1-4).

In a study involving 3,790 nasopharyngeal samples testing positive for SARS-CoV-2 by PCR, a significant correlation was found between isolation of the virus by culture—therefore potential contagiousness—and viral load determined by cycle threshold (CT) (ie, the number of cycles needed to detect the virus with higher numbers thought to be associated with lower risk of contagion) (2). Some have suggested that patients with CT above 33-34 are no longer contagious (3).

In another study involving 978 patients with Covid-19, high viral load in nasopharyngeal specimens was associated with higher risk of intubation (O.R. 2.7, 1.7-4.4), and mortality (6.1, 2.9-12.5) (4).

In addition, simultaneous presence of high viral loads in the respiratory specimens in the population suggests an expanding outbreak, while low viral loads may imply that the outbreak is waning (1).

Some have cautioned against over-reliance on viral loads in Covid-19 due to factors such as variation in the technique of obtaining specimens and testing instruments (5).

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 

References
1. Service RF. Covid-19. A call for diagnostic tests to report viral load. Science 2020, October 2;370:22. https://www.sciencemag.org/news/2020/09/one-number-could-help-reveal-how-infectious-covid-19-patient-should-test-results
2. Jaafar R, Aherfi S, Wurtz N, et al. Correlation between 3790 qPCR positives samples and positive cell cultures including 1941 SARS-CoV-2 isolates. Clin Infect Dis 2020, September. https://pubmed.ncbi.nlm.nih.gov/32986798/
3. La Scola B, Le Bideau M, Andreani J, et al. Viral RNA as determined by cell culture as a management tool for discharge of SARS-CoV-2 patients from infectious disease wards. Eur J Clin Microbiol Infect Dis 2020;39:1059-1061. https://pubmed.ncbi.nlm.nih.gov/32342252/
4. Magleby R, Westblade LF, Trzebucki A, et al. Impact of severe acute respiratory syndrome coronavirus 2 viral load on risk of intubation and mortality among hospitalized patients with coronavirus disease 2019. Clin Infect Dis 2020. https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciaa851/5865363
5. Rhoads D, Peaper DR, She RC, et al. College of American Pathologists (CAP) Microbiology Committee perspective: caution must be used in interpreting the cycle threshold (Ct) value. Clin Infect Dis 12 August, 2020. https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciaa1199/5891762

 

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

How might measuring viral load in respiratory specimens be helpful clinically in patients with Covid-19?

Why would my patient with Covid-19 infection test negative by PCR?

There are several potential reasons why someone who is infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the agent of Covid-19, may test negative by PCR. These including the threshold for detection of virus (which can vary among different manufacturers from as low as 100 viral copies/ml to >6,000 copies/ml),1 timing of the sample collection with respect to infection stage (lowest false-negative rate [~20%] on day 3 of symptoms or 8 days post-infection),specimen storage and transport and, particularly in the case of nasopharyngeal specimens, the adequacy of the sample obtained. 3

Suboptimal specimen collection from nasopharynx has long been suspected as an explanation for false-negative PCR tests in patients who subsequently have a positive test or are highly suspected of having Covid-19, but without any good support data. Until now…

A clever study looked at the presence of human DNA recovered from nasopharyngeal swabs as a marker for adequate specimen collection quality and found that human DNA levels were significantly lower in samples from patients with confirmed or suspected Covid-19 that yielded negative results compared to those of representative pool of samples submitted for Covid-19 testing.3

Interestingly, major commercial assays do not include any internal controls that ensure adequate sampling before testing for SARS-CoV2.

A typical microbiology lab can reject a sputum culture if gram-stain suggests poor quality specimen (eg, saliva only) but it looks like no similar rule exists for nasopharyngeal PCR tests for SARS-CoV-2 through commercial labs. Apparently, the US-CDC diagnostic panel does include a human RNAseP RNA-specific primer/probe set but the interpretation criteria for this control may also be too liberal.3

For these reasons, in patients highly suspected of having Covid-19 but with a negative initial PCR test, a repeat test on the same day or next 2 days is recommended.4

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 

References

  1. Prinzi A. False negatives and refinfections: the challenges of SARS-CoV-2 RT-PCR testing. Available at https://asm.org/Articles/2020/April/False-Negatives-and-Reinfections-the-Challenges-of     Accessed October 5, 2020.
  2. Kucirka LM, Lauer SA, Laeyendecker O, et al. Variation in false-negative rate of reverse transcriptase polymerase chain reaction-based SARS-CoV-2 tests by time since exposure. Ann Intern Med 2020 May 13:M20-1495. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7240870/
  3. Kinloch NN, Ritchie G, Brumme CJ, et al. Suboptimal biological sampling as a probable cause of false-negative COVID-19 diagnostic test results. J Infect Dis 2020;222:899-902. https://academic.oup.com/jid/article/222/6/899/5864227
  4. Green DA, Zucker J, Westbade LF, et al. Clinical performance of SARS-CoV-2 molecular testing. J Clin Microbiol 2020. DOI:10.1128/JCM.00995-20. https://jcm.asm.org/content/58/8/e00995-20

 

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

Why would my patient with Covid-19 infection test negative by PCR?

Why are antibiotics routinely administered in patients with cirrhosis and upper gastrointestinal (GI) bleed?

Antibiotic prophylaxis in patients with cirrhosis and upper gastrointestinal bleed (UGIB) reduce bacterial infections, all-cause mortality, bacterial infection, mortality, rebleeding events and hospitalization.1

A 2011 Cochrane meta-analysis involving 12 trials comparing antibiotic prophylaxis to no prophylaxis or placebo found reduction in bacterial infection (RR 0.35, 95% C.I., 0.26-0.47) and overall mortality (RR 0.79, 95% C.I. 0.63-0.98). It also found a significant reduction in rebleeding and days of hospitalization, based on more limited data. Trials in this meta-analysis involved a variety of antibiotics, including norfloxacin, ciprofloxacin, cefazolin, cefotaxime, ceftriaxone and ampicillin-sulbactam. 1

So why is ceftriaxone the often-favored bacterial prophylaxis in UGIB? First, infections in cirrhotic patients often originate from bacterial translocation through the GI tract with aerobic gram-negative GI flora expected to be susceptible to ceftriaxone.2 Second, the emerging quinolone resistance among aerobic Gram-negative bacteria 2 and frequent use of ciprofloxacin for prophylaxis against spontaneous bacterial peritonitis have made use of ceftriaxone in this setting more desirable than quinolones.

Of note, a 2006 study involving patients with advanced cirrhosis (Child Pugh B or C) and GI hemorrhage receiving either norfloxacin or ceftriaxone for 7 days found a significantly lower risk of suspected or proven infections (11% vs 33%) and bacteremia or spontaneous bacterial peritonitis (2% vs 12%) in the ceftriaxone group; there was no difference in hospital mortality. 3 Although the overall prevalence of quinolone-resistant gram-negatives was unknown, 6 of 7 gram-negative bacilli isolated in the norfloxacin group were quinolone resistant.

Bonus Pearl: Did you know that 30-40% of cirrhotic patients presenting with UGIB will develop a bacterial infection within a week of their admission? 1

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. Chavez-Tapia NC, Barrientos-Gutierrez T, Tellez-Avila F, et al. Meta-analysis: antibiotic prophylaxis for cirrhotic patients with upper gastrointestinal bleeding-an updated Cochrane review. Aliment Pharmacol Ther 2011;34:509-518. https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1365-2036.2011.04746.x
  2. Mallet M, Rudler M, Thabut D. Variceal bleeding in cirrhotic patients. Gastroenterology Reports 2017;5:185-192. https://academic.oup.com/gastro/article/5/3/185/4002779
  3. Fernandez J, del Arbo LR, Gomez C, et al. Norfloxacin vs ceftriaxone in the prophylaxis of infections in patients with advanced cirrhosis and hemorrhage. Gastroenterology 2006;131:1049-1056. https://www.sciencedirect.com/science/article/abs/pii/S0016508506015356

 

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

Why are antibiotics routinely administered in patients with cirrhosis and upper gastrointestinal (GI) bleed?

Is cefepime an acceptable alternative to carbapenems in the treatment of cefepime susceptible extended spectrum beta-lactamase (ESBL) Gram-negatives?

Irrespective of in-vitro susceptibility results, cefepime should be avoided in the treatment of serious ESBL infections associated with bacteremia, pneumonia, intraabdominal infection, endocarditis, bone/joint infection or whenever a high bacterial inoculum is suspected. Cefepime should be considered only in non-severe infections (eg, uncomplicated urinary tract infection) when the minimum inhibitory concentration (MIC) is 2 mg/L or less (1).

 

To date, clinical studies comparing cefepime vs carbapenem have been small and/or retrospective, often with conflicting results (1). A 2016 propensity score-matched study of patients with ESBL bacteremia receiving cefepime therapy followed by carbapenem therapy vs carbapenem for the entire treatment duration found higher 14 day mortality in the cefepime group (41% vs 20% in the carbapenem group) (2).  Of note, 2 of the patients receiving cefepime who died were infected with an ESBL organism with MIC of 1 mcg/mL. 

 

Another study found cefepime to be inferior to carbapenem therapy in ESBL bacteremic patients with better outcome when cefepime MIC was 1 ug/m or less (3).

 

Two studies involving patients with ESBL UTIs found no significant difference between cefepime and carbapenem in clinical and microbiological response or in-hospital mortality, while another UTI study with a high rate of septic shock (33%) found that cefepime was inferior to carbapenem in clinical and microbiological response (2).

 

The diminished efficacy of cefepime for the treatment of ESBL infections may be related to its “inoculum effect” ie, marked increase in MIC with increased inoculum size compared to that used in standard laboratory susceptibility testing (1,4).   

 

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 

References

  1. Karaiskos I, Giamarellou H. Carbapenem-sparing strategies for ESBL producers: when and how. Antibiotics 2020;9,61. https://pubmed.ncbi.nlm.nih.gov/32033322/
  2. Wang R, Cosgrove S, Tschudin-Sutter S, et al. Cefepime therapy for cefepime-susceptible extended-spectrum beta-lactamase-producing Enerobacteriaceae bacteremia. Open Forum Infect Dis 2016. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4942761/
  3. Lee NY, Lee CC, Huang WH, et al. Cefepime therapy for monomicrobial bacteremia caused by cefepime-susceptible extended-spectrum beta-lactamase-producing Enterobacteriaceae: MIC matters. Clin Infect Dis 203;56:488-95. https://academic.oup.com/cid/article/56/4/488/351224
  4. Smith KP, Kirby JE. The inoculum effect in the era of multidrug resistance:minor differences in inoculum have dramatic effect on MIC determination. Antimicrob Agents Chemother 2018;62:e00433-18. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6105823/

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

Is cefepime an acceptable alternative to carbapenems in the treatment of cefepime susceptible extended spectrum beta-lactamase (ESBL) Gram-negatives?

What is the utility of nasal screen for methicillin-resistant Staphylococcus aureus (MRSA) in patients with skin and soft tissue infections?

In patients at high risk of MRSA infection (eg, prior history of MRSA colonization or infection, recent hospitalization/antibiotics, intravenous drug use, traumatic injury),1 particularly in the presence of an open wound or purulent drainage, a negative MRSA nasal screen does not rule out MRSA skin and soft tissue infection (SSTI), nor does a positive MRSA nasal screen reliably predict MRSA SSTI. In contrast, in low risk patients without severe disease, a negative MRSA nasal screen may be helpful in deescalating empiric anti-MRSA coverage.

The sensitivity of MRSA nasal screen by culture or PCR for SSTIs may be as low as 40%, higher among those with an ulcer (70%), with negative predictive values of 80% to 98% depending on the prevalence of MRSA in the population; its specificity is better (72% to 96%) with positive predictive values of 7% to 76%. 2

In a retrospective study involving 57 diabetic patients hospitalized with foot wound infection, the sensitivity of MRSA nasal screen was only ~40% with a negative predictive value of 80%. 3 Another study found a negative predictive value of ~90% for MRSA nasal screen among patients with a diabetic foot infection when MRSA isolation from wounds was uncommon (7.5%).4

Several reasons explain why patients with a negative MRSA nasal screen could still have MRSA SSTI, including colonization in other body sites known to harbor MRSA (eg, rectum, axilla, groin, oropharynx) 6-9 or direct wound contamination with MRSA in the absence of carriage, particularly in healthcare facilities.10

Bonus Pearl: Did you know that dogs, particularly those owned by healthcare workers, may also carry MRSA in their nostrils?.11,12

 

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 

References

  1. Stevens DL, Bisno AL, Chambers H, et al. Practice guidelines for the diagnosis and treatment of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. Clin Infect Dis 2014; 59:e10-52. https://www.idsociety.org/practice-guideline/skin-and-soft-tissue-infections/
  2. Carr AL, Daley MJ, Merkel KG, et al. Clinical utility of methicillin-resistant Staphylococcus aureus nasal screening for antimicrobial stewardship: A review of current literature. Pharmacotherapy 2018;38:1216-1228. https://accpjournals.onlinelibrary.wiley.com/doi/abs/10.1002/phar.2188
  3. Lavery LA, La Fonatine J, Bhavan K, et al. Risk factors for methicillin-resistant Staphylococcus aureus in diabetic foot infections. Diabet Foot Ankle 2014;5:10.3402/dfa.v5.23575. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3984406/
  4. Mergenhagen KA, Croix M, Starr KE, et al. Utility of methicillin-resistant Staphylococcus aureus nares screening for patients with a diabetic foot infection. Antimicrob Agents Chemother 2020;64:e02213-19. https://pubmed.ncbi.nlm.nih.gov/31988097/  
  5. Currie A, Davis L, Odrobina E, et al. Sensitivities of nasal and rectal swabs for detection of methicillin-resistant Staphylococcus aureus colonization in an active surveillance program. J Clin Microbiol 2008;46:3101-3103. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2546770/
  6. Mermel LA, Cartony JM, Covington P, et al. Methicillin-resistant Staphylococcus aureus colonization at different body sites: a prospective, quantitative analysis. J Clin Microbiol 2011;49:1119-21. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3067701/#B4
  7. Baker SE, Brecher SM, Robillar E, et al. Extranasal methicillin-resistant Staphylococcus aureus colonization at admission to an acute care Veterans Affairs Hospital. Infect Control Hosp Epidemiol 2010;31:42-6. https://pubmed.ncbi.nlm.nih.gov/19954335/
  8. Manian FA, Senkel D, Zack J et al. Routine screening for methicillin-resistant Staphylococcus aureus among patients newly admitted to an acute rehabilitation unit. Infect Control Hosp Epidemiol 2002;23:516-9. https://pubmed.ncbi.nlm.nih.gov/12269449/
  9. Lautenbach E, Nachamkin I, Hu B, et al. Surveillance culture for detection of methicillin-resistant Staphylococcus aureus: diagnostic yield of anatomic sites and comparison of provider- and patient-collected samples. Infect Control Hosp Epidemiol 2009;30:380-82. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2665909/
  10. Boyce JM, Bynoe-Potter G, Chenevert C, et al. Environmental contamination due to methicillin-resistant Staphylococcus aureus: possible infection control implications 1997;18:622-7. https://pubmed.ncbi.nlm.nih.gov/9309433/  
  11. Boost MV, O’donaghue MM, James A. Prevalence of Staphylococcus aureus among dogs and their owners. Epidemiol Infect 2008;136:953-64. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2870875/#ref017
  12. Manian FA. Asymptomatic carriage of mupirocin-resistant methicillin-resistant Staphylococcus aureus (MRSA) in a pet dog associated with MRSA infection in household contacts. Clin Infect Dis 2003;36;e26-28. https://academic.oup.com/cid/article/36/2/e26/317343

 

 

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

What is the utility of nasal screen for methicillin-resistant Staphylococcus aureus (MRSA) in patients with skin and soft tissue infections?