Key clinical pearls on the management of patients suspected of or diagnosed with Covid-19 in the outpatient setting

Here are some key points to remember when managing patients with Covid-19 symptoms in the outpatient setting.  These points are primarily based on the CDC guidelines and the current literature. They may be particularly useful to primary care providers (PCP) who do not have ready access to Covid-19 test kits or radiographic imaging in the diagnosis of patients suspected of or diagnosed with Covid-19.

  • Isolation precautions. 1,6-7 Minimize chances of exposure by placing a facemask on the patient and placing them in an examination room with the door closed. Use standard and transmission-based precautions including contact and airborne protocols when caring for the patient. Put on an isolation gown and N95 filtering facepiece respirator or higher. Use a facemask if a respirator is not available. Put on face shield or goggles if available. Adhere to strict hand hygiene practices with the use of alcohol-based hand rub with greater than 60% ethanol or 70% isopropanol before and after all patient contact. If there is no access to alcohol-based hand sanitizers, the CDC recommends hand washing with soap and water as the next best practice.

 

  • Risk Factors.2-3 Older patients and patients with severe underlying medical conditions seem to be at higher risk for developing more serious complications from Covid-19 illness. Known risk factors for severe Covid-19 include age over 60 years, hypertension, diabetes, cardiovascular disease, chronic respiratory disease, and immunosuppression.

 

  • Symptoms.2,4,8,9 Reported illnesses have ranged from mild symptoms to severe illness and death. These symptoms may appear after a 2- to 14-day incubation period.
    • Fever at any time 88-99%
    • Cough 59-79%
    • Dyspnea 19-55%
    • Fatigue 23-70%
    • Myalgias 15%-44%
    • Sputum production 23-34%
    • Nausea or vomiting 4%-10%
    • Diarrhea 3%-10%
    • Headache 6%-14%
    • Sore throat 14%
    • Rhinorrhea/nasal congestion (4.8%)
    • Anosmia (undocumented percentage)

 

  • Treatment for mild illness.5 Most patients have mild illness and are able to recover at home. Counsel patients suspected to have Covid-19 to begin a home quarantine staying in one room away from other people as much as possible. Patients should drink lots of fluids to stay hydrated and rest. Over the counter medicines may help with symptoms. There is controversy regarding the safety of NSAIDs in Covid-19 (See related P4P pearl). Generally, symptoms last a few days and  patients get better after a week. There is no official guidance from the CDC or other reliable sources on how often a PCP should check in with a patient confirmed with Covid-19 and in quarantine. Please use good judgement and utilize telehealth capabilities via phone call, video call, etc… if possible.

 

  • Treatment for severe illness.3 Patients should be transferred immediately to the nearest hospital. If there is no transfer service available, a family member with appropriate personal protective equipment (PPE) precautions, should drive patient to nearest hospital for critical care services.

 

  • Ending home isolation. 5
    • Without testing: Patients can stop isolation without access to a test result after 3 things have happened. 1) No fever for at least 72 hours. This is 3 full days of no fever and without the use of medication that reduces fever; 2) Respiratory symptoms have improved.; and 3) At least 7 days have passed since symptoms first appeared.
    • With testing. 5 Home isolation may be ended after all of the following 3 criteria have been met: 1) No fever for at least 72 hours. This is 3 full days of no fever and without the use of medication that reduces fever; 2) Respiratory symptoms have improved; and 3) Negative results from at least 2 consecutive nasopharyngeal swab specimens collected more than 24 hours apart.

To all the healthcare providers out there, please be safe and stay healthy!

 

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 

Contributed by Erica Barnett, Harvard Medical Student, Boston, MA.

 

References:

  1. CDC. Evaluating and Testing Persons for Coronavirus Disease 2019 (COVID-19). https://www.cdc.gov/coronavirus/2019-nCoV/hcp/clinical-criteria.html
  2. CDC. Symptoms and Testing. https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/index.html
  3. World Health Organization. Operational Considerations for case management for COVID-19 in health facility and community. https://apps.who.int/iris/bitstream/handle/10665/331492/WHO-2019-nCoV-HCF_operations-2020.1-eng.pdf
  4. Partners in Health. Resource Guide 1: Testing, Tracing, community management. https://www.pih.org/sites/default/files/2020-03/PIH_Guide_COVID_Part_I_Testing_Tracing_Community_Managment_3_28.pdf
  5. CDC. Caring for someone at home. https://www.cdc.gov/coronavirus/2019-ncov/if-you-are-sick/care-for-someone.html
  6. CDC. Using PPE. https://www.cdc.gov/coronavirus/2019-ncov/hcp/using-ppe.html
  7. CDC. Hand Washing. https://www.cdc.gov/coronavirus/2019-ncov/hcp/hand-hygiene.html
  8. Harvard Health Publishing. COVID-19 Basics. https://www.health.harvard.edu/diseases-and-conditions/covid-19-basics
  9. Guan W, Ni Z, Hu Y, et al. Clinical characteristics of Coronavirus disease 2019 in China. N Engl J Med 2020, March 6. DOI:10.1056/NEJM022002032 https://www.ncbi.nlm.nih.gov/pubmed/32109013

 

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

Key clinical pearls on the management of patients suspected of or diagnosed with Covid-19 in the outpatient setting

What’s causing an isolated GGT elevation in my patient with an abnormal alkaline phosphatase on her routine admission lab?

Although serum gamma-glutamyl transpeptidase or GGT is a very sensitive test for liver disease, especially of biliary origin, it’s by no means a very specific test. Besides the liver, GGT is found in the kidneys, pancreas, prostate, heart, brain, and seminal vesicles but not in bone (1-4).

 
Obesity, alcohol consumption and drugs are common causes of GGT elevation (2). As early as 1960s, elevated GGT was reported in such seemingly disparate conditions as diabetes mellitus, congestive heart failure, myocardial infarction, nephrotic syndrome and renal neoplasm (3). Nonalcoholic steatohepatitis, viral hepatitis, biliary obstruction, COPD, liver metastasis, drug-induced liver injury can all cause GGT elevation (1-4).

 
An isolated GGT does not necessarily indicate serious or progressive liver disease. That’s one reason it’s often not included in routine “liver panel” lab tests (1).

What to do when GGT is high but other liver panel tests such as ALT, AST, albumin, and bilirubin are normal? If your patient is at risk of acquired liver disease, then further workup may be necessary (eg, hepatitis B and C screening tests). Alcohol consumption should be queried. Don’t forget conditions associated with iron overload. If your patient is obese, diabetic or has elevated both lipids, an ultrasound of the liver to look for fatty liver should be considered. In the absence of risk factors, symptoms, or physical exam suggestive of liver disease, isolated GGT elevation should not require further investigation (1).

 
One good thing that may come out of finding an isolated elevated GGT is to encourage your patient to curb alcohol consumption or lose weight when indicated. But don’t rely on a normal GGT to rule out heavy alcohol consumption as it may miss 70% to 80% of cases (6)! 

 
Bonus Pearl: Did you know that GGT activity is thought to increase in alcohol use due to its role in maintaining intracellular glutathione, an anti-oxidant, at adequate levels to protect cells from oxidative stress caused by alcohol?

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

1. Carey WD. How should a patient with an isolated GGT elevation be evaluated? Clev Clin J Med 2000;67:315-16. https://www.ncbi.nlm.nih.gov/pubmed/10832186
2. Newsome PN, Cramb R, Davison SM, et al. Guidelines on the management of abnormal liver blood tests. Gut 2018;67:6-19. https://gut.bmj.com/content/gutjnl/67/1/6.full.pdf
3. Whitfield JB, Pounder RE, Neale G, et al. Serum gamma-glutamyl transpeptidase activity in liver disease. Gut 1972;13:702-8. https://www.ncbi.nlm.nih.gov/pubmed/4404786
4. Tekin O, Uraldi C, Isik B, et al. Clinical importance of gamma glutamyltransferase in the Ankara-Pursaklar region of Turkey. Medscape General Medicine 2004;6(1):e16. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1140713/
5. Van Beek JHDA, de Moor MHM, Geels LM, et al. The association of alcohol intake with gamma-glutamyl transferase (GGT) levels:evidence for correlated genetic effects. Drug Alcohol Depend 2014;134:99-105. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3909645/

6. Bertholet N, Winter MR, Cheng DM, et al. How accurate are blood (or breath) tests for identifying self-reported heavy drinking among people with alcohol dependence? Alcohol and Alcoholism 2014;49:423-29. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4060735/pdf/agu016.pdf

What’s causing an isolated GGT elevation in my patient with an abnormal alkaline phosphatase on her routine admission lab?

Is my patient with gout at higher risk of cancer?

Although the association of gout with cardiovascular disease, chronic kidney disease, hypertension, diabetes mellitus or obesity is well known, increasingly number of epidemiologic studies support the association of gout with higher risk of malignancy. 1,2

A 2015 meta-analysis of 3 studies involving over 50,000 persons concluded that gout was an independent risk factor for cancer, particularly urological, gastrointestinal and lung cancers. 1

A population-based study of comorbidities in over 2 million persons in Sweden found that in addition to an increased risk of diabetes mellitus, hypertension, chronic heart failure, chronic kidney disease and alcohol abuse, gout was associated with increased risk of malignancy: odds ratio 1.3 (1.2-1.5) in men and 1.1 (1.1-1.2) in women. 2

Although serum uric acid has been considered to have anti-oxidant properties, a prospective study of over 28,000 women followed over a median of 15.2 years did not find high serum acid levels to be protective of cancer.3 In fact, uric acid levels > 5.4 mg/dL at the time of subject enrollment was independently associated with increased risk of total cancer mortality and deaths from a variety of malignant neoplasms, including those of breast, female genital organs, and nervous systems. 3 In a similar prospective study involving men, high uric acid levels (>6.7 mg/dL) were associated with increased risk of mortality from gastrointestinal, respiratory and intrathoracic organ malignancies. 4

Whether the observed association between gout and higher risk of malignancy is causal or due to the company that gout often keeps (eg, lifestyle) is unclear.

Fun fact: Did you know that among mammals, only humans, great apes and certain breeds of dogs (eg, Dalmation) produce elevated levels of uric acid in the urine and blood? 5

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. Wang W, Xu D, Wang B, et al. Increased risk of cancer in relation to gout: a review of three prospective cohort studies with 50,358 subjects. Mediators of Inflammation 2015, Article ID 680853, 6 pages. https://www.ncbi.nlm.nih.gov/pubmed/26504360
  2. Wandell P. Gout and its comorbidities in the total population of Stockholm. Preventive Medicine 2015; 81:387-91. ISSN 0091-7435. https://www.ncbi.nlm.nih.gov/pubmed/26500085
  3. Strasak AM, Rapp K, Hilbe W, et al. The role of serum uric acid as an antioxidant protecting against cancer: prospective study in more than 28000 older Austrian women. Ann Onc 2007;18:1893-97. https://www.ncbi.nlm.nih.gov/pubmed/17785768
  4. Strasak Am, Hilbe RK, Oberaingner W, et al. Serum uric acid and risk of cancer mortality in a large prospective male cohort. Cancer Causes Control 2007;18:1021-9. https://www.ncbi.nlm.nih.gov/pubmed/17665312
  5. Bannasch D, Safra N, Young A, et al. Mutations in the SLC2A9 gene cause hyperuriosuria and hyperuricemia in the dog. PLOS Genet 2008;4:e1000246. https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1000246&type=printable
Is my patient with gout at higher risk of cancer?

Why is my diabetic patient complaining of arm pain and localized edema for couple of weeks without an obvious cause?

Aside from the usual suspects associated with a painful extremity (eg, trauma, deep venous thrombosis and soft tissue infections), think of spontaneous diabetic myonecrosis (DMN), also known as diabetic muscle infarction (1-3).

DMN is characterized by abrupt onset of painful swelling of the affected muscle, most often of the lower extremities, but also occasionally upper extremities. DMN occurs in patients with longstanding DM whose blood glucose control has deteriorated over time, often with nephropathy, retinopathy and/or neuropathy (1-3).

Couple of things to remember when considering DMN in your differential of a painful extremity. First, except for localized edema and tenderness over the involved muscle, the exam may be unremarkable. Specifically, there is no erythema or signs of compartment syndrome and fever is absent in the great majority of patients (~90%) (2). Even white blood cell count and creatine kinase (CK) are usually normal. The reason for normal CK at presentation is not clear but CK might have already peaked by the time of patient presentation (3). In contrast, C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) are usually elevated (>80%) (1).

MRI (without contrast in patients with renal insufficiency) is the imaging of choice with muscle enlargement and edema with hyperintense signal on T2-weighted images and other changes, including perifascial, perimuscular and or subcutaneous edema (1-3). Muscle biopsy is not currently recommended because of its adverse impact on time to symptomatic improvement. Non-surgical therapy, with rest, analgesia and glycemic control is usually recommended (1-3).

 
Though its exact cause is still unclear, atherosclerosis, diabetic microangiopathy, vasculitis with thrombosis and ischemia-reperfusion injury have been posited as potential precipitants for DMN. The role of anti-phospholipid syndrome, particularly in patients with type I DM, is unclear (1,2).

 
Bonus pearl: Did you know that symptoms of DMN may last for weeks with at least one-third of patients having a recurrence in the same muscle or elsewhere (1)?

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Reference
1. Horton WB, Taylor JS, Ragland TJ, et al. Diabetic muscle infarction: a systematic review. BMJ Open Diabetes Research and Care 2015;3:e000082.
2. Trujillo-Santos AJ. Diabetic muscle infarction. An underdiagnosed complication of long-standing diabetes. Diabetes Care 2003;26:211-15.
3. Diabetes muscle infarction in end-stage renal disease:A scoping review on epidemiology, diagnosis and treatment. World J Nephrol 2018;7:58-64.

Why is my diabetic patient complaining of arm pain and localized edema for couple of weeks without an obvious cause?

My patient with diabetes mellitus is now admitted with pneumonia. Does diabetes increase the risk of pneumonia requiring hospitalization?

The weight of the evidence to date suggests that diabetes mellitus (DM) does increase the risk of pneumonia-related hospitalization.1-3

A large population-based study involving over 30,000 patients found an adjusted relative risk (RR) of hospitalization with pneumonia of 1.26 (95% C.I 1.2-1.3) among patients with DM compared to non-diabetics.  Of note, the risk of pneumonia-related hospitalization was significantly higher in type 1 as well as type 2 DM and among patients whose A1C level was ≥9.1  Another population-based study found a high prevalence of DM (25.6%) in patients hospitalized with CAP, more than double that in the population studied.2  A 2016 meta-analysis of observational studies also found increased incidence of respiratory tract infections among patients with diabetes (OR 1.35, 95% C.I. 1.3-1.4).

Not only does DM increase the risk of pneumonia-related hospitalization, but it also appears to adversely affect its outcome with increased in-hospital mortality.2 Among patients with type 2 DM,  excess mortality has also been reported at 30 days, 90 days and 1 year following hospitalization for pneumonia. 4,5 More specifically, compared to controls with CAP, 1 year mortality of patients with DM was 30% (vs 17%) in 1 study. 4

Potential reasons for the higher incidence of pneumonia among patients with DM include increased risk of aspiration (eg, in the setting of gastroparesis, decreased cough reflex), impaired immunity (eg, chemotaxis, intracellular killing), pulmonary microangiopathy and coexisting morbidity. 1,3,5,6

Bonus Pearl: Did you know that worldwide DM has reached epidemic levels, such that if DM were a nation, it would surpass the U.S. as the 3rd most populous country! 7

If you liked this post, sign up under MENU and catch future fresh pearls straight into your mailbox!

References

  1. Kornum JB, Thomsen RW, RUS A, et al. Diabetes, glycemic control, and risk of hospitalization with pneumonia. A population-based case-control study. Diabetes Care 2008;31:1541-45. https://www.ncbi.nlm.nih.gov/pubmed/17595354
  2. Martins M, Boavida JM, Raposo JF, et al. Diabetes hinders community-acquired pneumonia outcomes in hospitalized patients. BMJ Open Diabetes Research and Care 2016;4:e000181.doi:10.1136/bmjdrc-2015000181. https://drc.bmj.com/content/4/1/e000181
  3. Abu-Ahour W, Twells L, Valcour J, et al. The association between diabetes mellitus and incident infections: a systematic review and meta-analysis of observational studies. BMJ Open Diabetes Research and Care 2017;5:e000336. https://drc.bmj.com/content/5/1/e000336. 
  4. Falcone M, Tiseo G, Russo A, et al. Hospitalization for pneumonia is associated with decreased 1-year survival in patients with type 2 diabetes. Results from a prospective cohort study. Medicine 2016;95:e2531. https://www.ncbi.nlm.nih.gov/pubmed/26844461
  5. Kornum JB, Thomsen RW, Rus A, et al. Type 2 diabetes and pneumonia outcomes. A population-based cohort study. Diabetes Care 2007;30:2251-57. https://www.ncbi.nlm.nih.gov/pubmed/17595354
  6. Koziel H, Koziel MJ. Pulmonary complications of diabetes mellitus. Pneumonia. Infect Dis Clin North Am 1995;9:65-96. https://www.ncbi.nlm.nih.gov/pubmed/7769221
  7. Zimmet PZ. Diabetes and its drivers: the largest epidemic in human history? Clinical Diabetes and Endocrinology 2017;3:1 https://clindiabetesendo.biomedcentral.com/articles/10.1186/s40842-016-0039-3  

 

My patient with diabetes mellitus is now admitted with pneumonia. Does diabetes increase the risk of pneumonia requiring hospitalization?

What is the significance of Terry’s or Lindsay’s nails in my hospitalized patient?

Terry’s nails were first described in 1954 in patients with hepatic cirrhosis (prevalence 82%, majority related to alcohol abuse) (1). Since then, they have been reported in a variety of other conditions, including adult-onset diabetes mellitus (AODM), chronic congestive heart failure, chronic renal failure, pulmonary tuberculosis, and Reiter’s syndrome (2).

A 1984 study found Terry’s nails in 25% of hospitalized patients (3).  In this study, cirrhosis, chronic congestive heart failure, and AODM were significantly associated with Terry’s nails, while pulmonary tuberculosis, rheumatoid arthritis and cancer were not. The presence of Terry’s nails may be particularly concerning in patients 50 y of age or younger as it increases the relative risk of cirrhosis, chronic congestive heart failure or AODM by 5-fold (18-fold for cirrhosis alone) in this age group (3).

Terry’s nails should be distinguished from Lindsay’s nails or “half and half” nails. Although both nail abnormalities are characterized by an opaque white proximal portion, Terry’s nails have a thinner distal pink to brown transverse band no more than 3 mm wide (3) (Fig 1), while the same anomaly is wider and occupies 20%-60% of the nail bed in Lindsay’s nails (Fig 2). Of interest, Lindsay’s nails have been reported in up to 40% of patients with chronic kidney disease (4,5).

References

1. Terry R. White nails in hepatic cirrhosis. Lancet 1954;266:757-59. https://www.ncbi.nlm.nih.gov/pubmed/13153107 
2. Nia AM, Ederer S, Dahlem K, et al. Terry’s nails: a window to systemic diseases. Am J Med 2011;124:603-604. https://www.ncbi.nlm.nih.gov/pubmed/21683827 
3. Holzberg M, Walker HK. Terry’s nails: revised definitions and new correlations. Lancet 1984;1(8382):896-99. https://www.ncbi.nlm.nih.gov/pubmed/6143196 
4. Pitukweerakul S, Pilla S. Terry’s nails and Lindsay’s nails: Two nail abnormalities in chronic systemic diseases. J Gen Intern Med 31;970.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4945547/ 
5. Gagnon AL, Desai T. Dermatological diseases in patients with chronic kidney disease 2013;2:104-109.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891143/

Figure 1. Terry’s nails in a patient with end-stage liver disease

Figure 2. Lindsay’s nails in a patient with chronic kidney disease

If you liked this post, SELRES_9060f380-b0ce-41bb-b812-fe2595cb3460SELRES_4b9ffe76-4732-435c-a61e-cb3aba28fef9SELRES_055e8f9c-d15f-4b5c-8ddc-c9eb04539366sign upSELRES_055e8f9c-d15f-4b5c-8ddc-c9eb04539366SELRES_4b9ffe76-4732-435c-a61e-cb3aba28fef9SELRES_9060f380-b0ce-41bb-b812-fe2595cb3460 on the P4P home page and receive future pearls delivered directly into your mailbox!

What is the significance of Terry’s or Lindsay’s nails in my hospitalized patient?

Should Aerococcus urinae growth from the urine of my elderly patient be considered a pathogen?

Although for many years Aerococcus urinae was considered a urinary contaminant, increasingly it is recognized as an emerging pathogen capable of causing not only urinary tract infection (UTI) but also secondary bacteremia and endocarditis, among others.1   

The proportion of patients with aerococcal bacteriuria with symptoms suggestive of UTI ranges from 55-98%.1 So A. urinae can no longer be assumed to be a contaminant, particularly in the presence of symptoms suggestive of UTI.

A. urinae UTI often affects the elderly (median age 79 y) and those with pre-existing urinary tract pathologies, such as prostatic hyperplasia, urethral stricture, renal calculi, and prior urinary tract surgery.2,3 Many patients also have underlying comorbidities such as diabetes, heart disease, dementia, and chronic renal failure.3

One clue to the presence of A. urinae in the urine is its particularly pungent odor reminiscent of that of patients with trimethylaminuria (fish odor syndrome).4

Once you decide you should treat A. urinae, keep in mind that it is NOT predictably susceptible to trimethoprim-sulfamethoxazole, fluoroquinolones, or fosfomycin!  Instead, consider penicillin, ampicillin, cephalosporin, or nitrofurantoin to which most strains are susceptible.5,6.

 

References

  1. Rasmussen M. Aerococcus: an increasingly acknowledged human pathogen. Clin Microbiol Infect 2016;22:22-27. https://www.ncbi.nlm.nih.gov/pubmed/26454061
  2. Tathireddy H, Settypalli S, Farrell JJ. A rare case of aerococcus urinae infective endocarditis. J Community Hosp Intern Med Perspectives 2017; 7:126-129. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5473194/
  3. Higgins A, Garg T. Aerococcus urinae: An emerging cause of urinary tract infection in older adults with multimordidity and urologic cancer. Urology Case Reports 2017;24-25. https://www.ncbi.nlm.nih.gov/pubmed/28435789
  4. Lenherr N, Berndt A, Ritz N, et al. Aerococcus urinae: a possible reason for malodorus urine in otherwise healthy children. Eur J Pediatr. 2014;173:1115-7 https://www.ncbi.nlm.nih.gov/pubmed/24913181
  5. Christensen JJ, Nielsen XC. Aerococcus urinae. Antimicrobe @ http://www.antimicrobe.orgb75.asp , accessed June 14, 2018.
  6. Dimitriadi D, Charitidou C, Pittaras T, et al. A case of urinary tract infection caused by Aerococcus urinae. J Bacteriol Mycol 2016; 2: 00041. https://pdfs.semanticscholar.org/a1cf/048d8444ce054ca9a332f7c2b4a218325ff6.pdf

 

Should Aerococcus urinae growth from the urine of my elderly patient be considered a pathogen?

My diabetic patient complains of acute blurred vision past few days since her blood glucoses have been out of control. How does high blood glucose affect the vision acutely?

“Vision loss or blurriness” is one of the most common manifestations of acute hyperglycemia in diabetic patients and is due to the osmotic swelling of the lens resulting in changes in its characteristics and the inability to properly focus an image.1

Since glucose acts as a solute, an increase in the concentration of glucose causes a rise in osmotic forces and movement of fluid into the lens, resulting in transient myopia. Interestingly, the increase in the fluid in the lens causes a change in its refractory index which is associated with focusing an image at a different length; it does not affect  its curvature or position. 

Baseline vision should be eventually restored by correcting glucose levels.2 Also remember that rapid correction of hyperglycemia may make the lens swelling worse, causing increased visual disturbances.3  

Fun fact: Did you know that chronic hyperglycemia is associated with cataract formation due to excess conversion of glucose to sorbitol in the lens? 4

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 

References

  1. Bron A.J, Sparrow J, Brown N, Harding J, Blakytny, R. The Lens in Diabetes. Eye 1993; 7: 260-75 https://www.nature.com/articles/eye199360.pdf
  2. Huntjens B. O’Donnell C. Refractive error changes in Diabetes Mellitus. Optometry in Practice 2006; 7:103-114. http://openaccess.city.ac.uk/6185/3/Refractive_Error_Changes_in_DM_FINAL.pdf
  3. Sychev YV, Zepeda EM, Lam DL. Bilateral cateract formation via acute spontaneous fracture of the lens following treatment of hyperglycemic hyperosmolar syndrome: Case report. Am J Ophthalmol 2017;7:66-69. https://www.ncbi.nlm.nih.gov/pubmed/29260081
  4. Pollreisz A, Ursula SE. Diabetic Cataract—Pathogenesis, Epidemiology and Treatment. Journal of Ophthalmology 2010; vol. 2010, Article ID 608751. https://www.hindawi.com/journals/joph/2010/608751

 

Contributed by Felicia Hsu, Medical Student, Harvard Medical School

My diabetic patient complains of acute blurred vision past few days since her blood glucoses have been out of control. How does high blood glucose affect the vision acutely?

200 pearls and counting! Take the Pearls4Peers quiz #2!

Multiple choice (choose 1 answer)
1. Which of the following classes of antibiotics is associated with peripheral neuropathy?
a. Penicillins
b. Cephalosporins
c. Macrolides
d. Quinolones

 

 

2. The best time to test for inherited thrombophilia in a patient with acute deep venous thrombosis is…
a. At least 1 week after stopping anticoagulants and a minimum of 3 months of anticoagulation
b. Just before initiating anticoagulants
c. Once anticoagulation takes full effect
d. Any time, if suspected

 

 

3. All the following is true regarding brain MRI abnormalities following a seizure, except…
a. They are observed following status epilepticus only
b. They are often unilateral
c. They may occasionally be associated with leptomeningeal contrast enhancement
d. Abnormalities may persist for weeks or months

 

 

4. Which of the following is included in the quick SOFA criteria for sepsis?
a. Heart rate
b. Serum lactate
c. Temperature
d. Confusion

 

 

5. All of the following regarding iron replacement and infection is true, except…
a. Many common pathogens such as E.coli and Staphylococcus sp. depend on iron for their growth
b. Association of IV iron replacement and increased risk of infection has not been consistently demonstrated
c. A single randomized-controlled trial of IV iron in patients with active infection failed to show increased infectious complications or mortality with replacement
d. All of the above is true

 

True or false

1. Constipation may precede typical manifestations of Parkinson’s disease by 10 years or more
2. Urine Legionella antigen testing is >90% sensitive in legionnaire’s disease
3. Spontaneous coronary artery dissection should be particularly suspected in males over 50 years of age presenting with acute chest pain
4. Urine dipstick for detection of blood is >90% sensitive in identifying patients with rhabdomyolysis and CK >10,000 U/L
5. Diabetes is an independent risk factor for venous thrombophlebitis

 

 

 

Answer key
Multiple choice questions:1=d; 2=a;3=a;4=d;5=c
True or false questions:1=True; 2,3,4,5=False

 

200 pearls and counting! Take the Pearls4Peers quiz #2!

My middle age patient complains of night sweats for several months, but she has had no weight loss and does not appear ill. What could I be missing?

Night sweats (NS) is a common patient complaint, affecting about a third of hospitalized patients on medical wards1.  Despite its long list of potential causes, direct relationship between the often- cited conditions and NS is usually unclear2, its cause may remain elusive In about a third to half of cases in the primary care setting, and its prognosis, at least in those >65 y of age, does not appear to be unfavorable 2,3.

Selected commonly and less frequently cited conditions associated with NS are listed (Table)2-9.  Although tuberculosis is one of the first conditions we think of when faced with a patient with NS, it should be emphasized that NS is not common in this disease (unless advanced) and is rare among hospitalized patients as a cause of their NS1,9.

In one of the larger study of adult patients seen in primary care setting, 23% reported pure NS and an additional 18% reported night and day sweats5; the prevalence of NS in both men and women was highest in 41-55 y age group. In multivariate analyses, factors associated with pure NS in women were hot flashes and panic attacks; in men, sleep disorders. 

Table. Selected causes of night sweats

Commonly cited Less frequently cited
Neoplastic/hematologic (eg, lymphoma, leukemia, myelofibrosis)

Infections (eg, HIV, tuberculosis, endocarditis)

Endocrine (eg, ovarian failure, hyperthyroidism, orchiectomy, carcinoid tumor, diabetes mellitus [nocturnal hypoglycemia], pheochromocytoma)

Rheumatologic (eg, giant cell arteritis)

Gastroesophageal reflux disease

B-12 deficiency

Pulmonary embolism

Drugs (eg, anti-depressants, SSRIs, donepezil [Aricept], tacatuzumab)

Sleep disturbances (eg, obstructive sleep apnea)

Panic attacks/anxiety disorder

Obesity

Hemachromatosis

Diabetes insipidus

References

  1. Lea MJ, Aber RC, Descriptive epidemiology of night sweats upon admission to a university hospital. South Med J 1985;78:1065-67.
  2. Mold JW, Holtzclaw BJ, McCarthy L. Night sweats: A systematic review of the literature. J Am Board Fam Med 2012; 25-878-893.
  3. Mold JW, Lawler F. The prognostic implications of night sweats in two cohorts of older patients. J Am Board Fam Med 2010;23:97-103.
  4. Mold JW, Holtzclaw BJ. Selective serotonin reuptake inhibitors and night sweats in a primary care population. Drugs-Real World Outcomes 2015;2:29-33.
  5. Mold JW, Mathew MK, Belgore S, et al. Prevalence of night sweats in primary care patients: An OKPRN and TAFP-Net collaborative study. J Fam Pract 2002; 31:452-56.
  6. Feher A, Muhsin SA, Maw AM. Night sweats as a prominent symptom of a patient presenting with pulmonary embolism. Case reports in Pulmonology 2015. http://dx.doi.org/10.1155/2015/841272
  7. Rehman HU. Vitamin B12 deficiency causing night sweats. Scottish Med J 2014;59:e8-11.
  8. Murday HK, Rusli FD, Blandy C, et al. Night sweats: it may be hemochromatosis. Climacteric 2016;19:406-8.
  9. Fred HL. Night sweats. Hosp Pract 1993 (Aug 15):88.
My middle age patient complains of night sweats for several months, but she has had no weight loss and does not appear ill. What could I be missing?