What is the mechanism of anemia of chronic disease in my patient with rheumatoid arthritis?

Anemia of chronic disease (ACD)—or more aptly “anemia of inflammation”— is the second most common cause of anemia after iron deficiency and is associated with numerous acute or chronic conditions (eg, infection, cancer, autoimmune diseases, chronic organ rejection, and chronic kidney disease)1.

The hallmark of ACD is disturbances in iron homeostasis which result in increased uptake and retention of iron within cells of the reticuloendothelial system, with its attendant diversion of iron from the circulation and reduced availability for erythropoiesis1. More specifically, pathogens, cancer cells, or even the body’s own immune system stimulate CD3+ T cells and macrophages to produce a variety of cytokines, (eg, interferon-ɤ, TNF-α, IL-1, IL-6, and IL-10) which in turn increase iron storage within macrophages through induction of expression of ferritin, transferrin and divalent metal transporter 1.

In addition to increased macrophage storage of iron, ACD is also associated with IL-6-induced synthesis of hepcidin, a peptide secreted by the liver that decreases iron absorption from the duodenum and its release from macrophages2. TNF-α and interferon-ɤ also contribute to ACD by inhibiting the production of erythropoietin by the kidney.  Finally, the life span of RBCs is adversely impacted in AKD due to their reduced deformability and increased adherence to the endothelium in inflammatory states3.

Of interest, it is often postulated that by limiting access to iron through inflammation, the body hinders the growth of pathogens by depriving them of this important mineral2.

 

References

  1. Weiss, G and Goodnough, L. Anemia of chronic disease. N Engl J Med 2005; 352; 1011-23. http://www.med.unc.edu/medclerk/medselect/files/anemia2.pdf
  2. D’Angelo, G. Role of hepcidin in the pathophysiology and diagnosis of anemia. Blood Res 2013; 48(1): 10-15. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624997/pdf/br-48-10.pdf                                                                                                                                  
  3. Straat M, van Bruggen R, de Korte D, et al. Red blood cell clearance in inflammation. Transfus Med Hemother 2012;39:353-60. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3678279/pdf/tmh-0039-0353.pdf

 

Contributed by Amir Hossein Ameri, Medical Student, Harvard Medical School

                     

What is the mechanism of anemia of chronic disease in my patient with rheumatoid arthritis?

My patient with cirrhosis has been admitted to the hospital several times this year with bacterial infections. How does cirrhosis increase susceptibility to infections?

Bacterial infections are a common cause of morbidity and mortality in patients with cirrhosis, affecting about 30% of such patients either at admission or during their hospitalization, with an attendant risk of mortality that is twice that of individuals without cirrhosis1.

Two major mechanisms may account for the observed immune dysfunction in cirrhosis: 1. Compromise of the immune surveillance function of the liver itself through damage of the reticulo-endothelial system (RES) and reduced synthesis of innate immunity proteins and pattern recognition receptors (PRRs); and 2. Dysfunctions of circulating and intestinal population of immune cells2.

Damage to the RES in cirrhosis leads to portal-system shunting, loss/damage of Kupffer cells (specialized hepatic macrophages) and sinusoidal capillarization, all hindering blood-borne pathogen clearance. Cirrhosis is also associated with a defect in hepatic protein synthesis, including complement components, decreased PRRs and acute phase reactants (eg C-reactive protein), which may in turn lead to the impairment of the innate immunity and bacterial opsonization.

Cirrhosis can also cause reduction in the number and function of neutrophils (eg, decreased phagocytosis and chemotaxis), B, T, and NK lymphocytes, and decreased in bacterial phagocytosis by monocytes. In addition, damage to the gut-associated lymphoid tissue (eg Peyer’s patches and mesenteric lymph nodes) may facilitate bacterial translocation.

References

  1. Pieri G, Agarwal B, Burroughs AK. C-reactive protein and bacterial infections in cirrhosis. Ann Gastroenterol 2014;27:113-120. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982625/pdf/AnnGastroenterol-27-113.pdf
  2. Albillos A, Lario M, Alvarez-Mon M. Cirrhosis-associated immune dysfunction: distinctive features and clinical relevance. J Hepatol 2014;61:1385-1396. http://www.journal-of-hepatology.eu/article/S0168-8278(14)00549-2/pdf

 

My patient with cirrhosis has been admitted to the hospital several times this year with bacterial infections. How does cirrhosis increase susceptibility to infections?

My patient with cirrhosis and suspected infection has a normal serum C-reactive protein (CRP). Does cirrhosis affect CRP response to infection?

 

CRP is primarily synthesized by the liver mainly as a response to IL-6 production in inflammatory states1.  Lower CRP production may then be expected in cirrhotic patients with significant infections and several studies support this view2

In a particularly convincing study involving E. coli-infected patients with bacteremia, the median CRP level in cirrhotic patients was about 40% that of non-cirrhotic patients (62 mg/L vs 146 mg/L)3.  In another study involving bacteremic patients with or without liver dysfunction, median CRP level was about 60% that of  patients with preserved liver function (81 mg/L vs 139 mg/L)4.  Some investigators have reported a cut-off CRP value of 9.2 mg/L as a possible screening test for bacterial infections in patients with cirrhosis with a sensitivity and specificity of 88% (AUROC 0.93)5.

Collectively, these data suggest that although CRP response may be diminished in patients with advanced liver disease and acute infection, its synthesis is still maintained.

References

  1. Pieri G, Agarwal B, Burroughs AK. C-reactive protein and bacterial infection in cirrhosis. Ann Gastroenterol 2014;27:113-20. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982625/pdf/AnnGastroenterol-27-113.pdf
  2. Ha YE, Kang C-I, Joo E-J, et al. Usefulness of C-reactive protein for evaluating clinical outcomes in cirrhotic patients with bacteremia. Korean J Intern Med 2011;26:195-200. http://pubmedcentralcanada.ca/pmcc/articles/PMC3110852/pdf/kjim-26-195.pdf
  3. Park WB1, Lee KD, Lee CS et al. Production of C-reactive protein in Escherichia coli-infected patients with liver dysfunction due to liver cirrhosis. Diagn Microbiol Infect Dis. 2005 Apr;51(4):227-30. https://www.ncbi.nlm.nih.gov/pubmed/15808312
  4. Mackenzie I, Woodhouse J. C-reactive protein concentrations during bacteraemia: a comparison between patients with and without liver dysfunction. Intensive Care Med 2006;32:1344-51. https://www.ncbi.nlm.nih.gov/pubmed/16799774
  5. Papp M, Vitalis Z, Altorjay I, et al. Acute phase proteins in the diagnosis and prediction of cirrhosis associated bacterial infection. Liver Int 2011;603-11. https://www.ncbi.nlm.nih.gov/pubmed/22145664

 

My patient with cirrhosis and suspected infection has a normal serum C-reactive protein (CRP). Does cirrhosis affect CRP response to infection?

How is the pathophysiology of sepsis-associated acute kidney injury (SA-AKI) different than AKI due to non-septic conditions?

Sepsis accounts for up to one-half of AKI cases in developed countries1.  Although sepsis-mediated hypoperfusion causing tubular necrosis has traditionally been implicated as the primary basis for SA-AKI,  an increasing number of studies have suggested that SA-AKI is a distinct subset of AKI differentiated from other causes by unique hemodynamic and inflammatory/immune-related mechanisms.  

Many animal and limited human studies have found that renal blood flow is an inconsistent predictor of SA-AKI unless cardiac output is affected1, possibly related to the redistribution of blood in the renal microvasculature to the detriment of the renal cortex in sepsis2.

Cytokine-mediated response in sepsis can also lead to tubular cellular injury without necessarily causing necrosis. Of interest, an autopsy study found histological features of acute tubular necrosis in only 22% of patients with clinical diagnosis of SA-AKI 3.  

Differences in its pathophysiology may at least in part explain why oliguria, renal function recovery, hemodialysis and death are more common among SA-AKI patients4.

 

References

  1. Alobaidi R, Basu RK, Goldstein SL, Bagshaw SM. Sepsis-associated acute kidney failure. Semin Nephrol 2015;35:2-11.
  2. Zafrani L, Payen D, Azoulay E, Ince C. The microcirculation of the septic kidney. Semin Nephrol 2015;35:75-84.
  3. Langenberg C, Bagshaw SM, May CN, Bellomo R. The histopathology of septic acute kidney injury: a systemic review. Crit Care 2008;12:R38.
  4. Cruz MG, de Oliveira Dantas JGA, Levi TM, et al. Septic versus non-septic acute kidney injury in critically ill patients: characteristics and clinical outcome. Rev Bras Ter Intensiva 2014;26:384-391.
How is the pathophysiology of sepsis-associated acute kidney injury (SA-AKI) different than AKI due to non-septic conditions?

What is the association between sepsis and jaundice in patients without biliary obstruction?

Sepsis and bacterial infection account for up to 20% of cases of jaundice in community hospitals, and may occur within a few days of onset of bacteremia or even before other clinical features of the underlying infection become apparent1.  

Although biliary obstruction is usually considered, many such patients lack extrahepatic cause for their jaundice. Gram-negative bacteria (eg, E. coli) are often the culprit with intraabdominal or urinary tract infection, pneumonia, endocarditis, and meningitis sources often cited. Hyperbilirubinemia (often 2-10 mg/dl) is commonly associated with elevated alkaline phosphatase and mild aminotransferases elevations, and usually resolves with treatment of infection1.

Although factors such as increased bilirubin load from hemolysis, hepatocellular injury, and drugs (eg, penicillins and cephalosporins) may play a role, cholestasis—likely due to cytokines such as tumor necrosis factor (TNF)α— is the predominant cause1.  Interestingly, anti-TNF-α antibodies block reduction in bile flow and bile salt excretion in laboratory animals2

 

References

  1. Chand N, Sanyal AJ. Sepsis-induced cholestasis. HEPATOLOGY 2007;45: 230-240.
  2. Whiting J, Green R, Rosenbluth A, Gollan J. Tumor necrosis factor-alpha decreases hepatocyte bile salt uptake and mediates endotoxin-induced cholestasis. HEPATOLOGY 1995;22:1273-1278.
What is the association between sepsis and jaundice in patients without biliary obstruction?

My elderly patient with acute heart failure with preserved ejection fraction (HFpEF) has a low serum albumin. Can hypoalbuminemia be associated with HFpEF?

As early as 1959, Guyton and Lindsey demonstrated the importance of serum colloid osmotic pressure in the pathogenesis of pulmonary edema1. Specifically, they found that in dogs with normal plasma protein concentrations fluid began to transudate into the lungs when the left atrial pressure rose above an average of 24 mm Hg vs only 11 mm Hg when plasma protein concentration was reduced by about 50%.

Fast forward to 2003, Arques et al studied serum albumin and pulmonary artery wedge pressures in patients with acute HFpEF, heart failure with reduced ejection fraction (HFrEF), acute dyspnea from pulmonary origin and normal controls2.   Patients with HFpEF were significantly more likely to have hypoalbuminemia , compared to those with HFrEF, pulmonary disease or normal controls.  The main cause of hypoalbuminemia in the HFpEF was malnutrition in 77% and/or sepsis in 41% of patients.   Hypoalbuminemia was inversely related to age and plasma C-reactive protein.

 

 

References

  1. Guyton AC, Lindsey AW. Effect of elevated left atrial pressure and decreased plasma protein concentration on the development of pulmonary edema. Circ Res 1959;7: 649-657.
  2. Arquès S, Ambrosi P, Gélisse R, Luccioni R, Habib G. Hypoalbuminemia in elderly patients with acute diastolic heart failure. J Am Coll Card 2003;42:712-16.
My elderly patient with acute heart failure with preserved ejection fraction (HFpEF) has a low serum albumin. Can hypoalbuminemia be associated with HFpEF?

What are the major changes in the definition of “sepsis” under the 3rd International Consensus Definitions for Sepsis and Septic shock (Sepsis-3)?

Under Sepsis-3 [1], sepsis is defined as a “life-threatening organ dysfunction caused by a dysregulated host response to infection (suspected or confirmed)”. Systemic inflammatory response syndrome (SIRS) is no longer defined as part of the sepsis spectrum, and its criteria have been replaced by the Sequential Organ Failure Assessment (SOFA) with a change in score ≥2 (Table) having >10% in-hospital mortality. Septic shock is defined as hypotension requiring vasopressors to maintain a MAP ≥65 mm Hg and a lactate >2 mmol/L (18 mg/dL) despite adequate volume (>40% in-hospital mortality).

A bedside clinical tool “quickSOFA” (qSOFA), not meant to substitute for SOFA, is also proposed to identify patients primarily outside of the ICU who may be at high risk of adverse outcomes, based on the following criteria: systolic blood pressure ≤100 mmHg, respiratory rate ≥22/min, and altered mental status. A qSOFA score ≥2 is associated with poorer outcomes [1,2].

So what do these new guidelines mean for clinicians? Under the new terminology, “sepsis” now refers only to what was previously considered severe sepsis with or without shock, and those who may need more aggressive therapy, closer monitoring and possible transfer to an ICU [1,2]. As the guidelines stress, however, failure to meet qSOFA or SOFA criteria should by no means lead to a deferral or delay in evaluation or treatment of infection deemed necessary by clinicians, and SIRS criteria may still be useful in identification of infection [1]. It remains to be seen whether limiting the definition of sepsis to only patients with associated organ dysfunction will translate into an overall earlier diagnosis and improved prognosis for this condition. Stay tuned!

 

Table. Sequential (sepsis-related) organ failure assessment (SOFA) score (adapted from ref.1)____________________________________________________________________________________________________

                                                                                             Points

Parameter                                0                      1                      2                      3                      4

____________________________________________________________________________________________________

Pa02/Fi02                           ≥400                 <400                <300                 <200*          <100*

Platelets (no./mL)           >150,000         <150,000         <100,000         <50,000       <20,000

Bilirubin (mg/dL)            <1.2                  1.2-1.9              2.0-5.9             6.0-11.9       >12.0

MAP (mm Hg) or VP      MAP≥70         MAP<70          DPA≤5           DPA 5.1-15        DPA>15

Glascow Coma Scale       15                    13-14            10-12                    6-9                 3-6

Creatinine (mg/dL)        <1.2                 1.2-1.9           2.0-3.4                  3.5-4.9        >5.0

OR U.O.  (mL/dL)                                                                                              <500                <200

____________________________________________________________________________________________________

MAP= mean arterial pressure, VP=vasopressor (includes agents other than dopamine), DPA=dopamine (in mcg/kg/min for ≥1 hour);U.O.= urine output

*With respiratory support

References:

  1. Singer MS, Deutschman CS, Seymour CW, et al; The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315[8]:801-810.
  2. Jacob JA. New Sepsis Diagnostic Guidelines Shift Focus to Organ Dysfunction. JAMA. 2016;213[8]:739-740.

 

Contributed by Erik Kelly MD, Boston, MA

What are the major changes in the definition of “sepsis” under the 3rd International Consensus Definitions for Sepsis and Septic shock (Sepsis-3)?