Key clinical pearls in the medical management of hospitalized patients with coronavirus (Covid-19) infection

First, a shout-out to dedicated healthcare workers everywhere who have selflessly given of themselves to care for the sick during this pandemic. Thank you! Together, I know we will get through it!

Although our understanding of Covid-19 infection is far from complete, in the spirit of clarity and brevity of my posts on Pearls4Peers, here are some key points I have gleaned from review of existing literature and the CDC that may be useful as we care for our hospitalized patients with suspected or confirmed Covid-19 infection.

  • Isolation precautions.1 Per CDC, follow a combination of airborne (particularly when aerosol generating procedures is anticipated, including nebulizer treatment) and contact precaution protocols. Routinely use masks or respirators, such as N-95s (subject to local availability and policy) and eye protection. Don gowns (subject to local availability and policy) and gloves and adhere to strict hand hygiene practices.

 

  • Diagnostic tests1-9
    • Laboratory tests. Routine admission labs include CBC, electrolytes, coagulation panels and liver and renal tests. Other frequently reported labs include LDH, C-reactive protein (CRP) and procalcitonin. Testing for high sensitivity troponin I has also been performed in some patients, presumably due to concern over ischemic cardiac injury or myocarditis.2 Check other labs as clinically indicated.
    • Chest radiograph/CT chest. One or both have been obtained in virtually all reported cases with CT having higher sensitivity for detection of lung abnormalities.
    • EKG. Frequency of checking EKGs not reported in many published reports thought 1 study reported “acute cardiac injury” in some patients, based in part on EKG findings.4 Suspect we will be checking EKGs in many patients, particularly those who are older or are at risk of heart disease.
    • Point-of-care ultrasound (POCUS). This relatively new technology appears promising in Covid-19 infections, including in rapid assessment of the severity of pneumonia or ARDS at presentation and tracking the evolution of the disease. 9 Don’t forget to disinfect the probe between uses!

 

  • Treatment 1-8
    • Specific therapies are not currently available for treatment of Covid-19 infections, but studies are underway.
    • Supportive care includes IV fluids, 02 supplementation and nutrition, as needed. Plenty of emotional support for patients and their families will likely be needed during these times.
    • Antibiotics have been used in the majority of reported cases, either on admission or during hospitalization when superimposed bacterial pneumonia or sepsis could not be excluded.
      • Prescribe antibiotics against common community-acquired pneumonia (CAP) pathogens, including those associated with post-viral/influenza pneumonia such as Streptococcus pneumoniae (eg, ceftriaxone), and Staphylococcus aureus (eg, vancomycin or linezolid if MRSA is suspected) when concurrent CAP is suspected.
      • Prescribe antibiotics against common hospital-acquired pneumonia (HAP) (eg, vancomycin plus cefepime) when HAP is suspected.
    • Corticosteroids should be avoided because of the potential for prolonging viral replication, unless indicated for other reasons such as COPD exacerbation or septic shock. 1
    • Monitor for deterioration in clinical status even when your hospitalized patient has relatively minor symptoms. This is because progression to lower respiratory tract disease due to Covid-19 often develops during the 2nd week of illness (average 9 days).
    • ICU transfer may be necessary in up to 30% of hospitalized patients due to complications such as ARDS, secondary infections, and multi-organ failure.

 

Again, thank you for caring for the sick and be safe! Feel free to leave comments or questions.

 

 Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 

References

  1. CDC. Interim clinical guidance for management of patients with confirmed coronavirus disease (COVID-19). https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-patients.html
  2. Ruan Q, Yang K, Wang W, Jiang L, et al. Clinical predictors of mortality due to COVID-19 based on analysis of data of 150 patients with Wuhan, China. Intensive Care Med 2020. https://link.springer.com/article/10.1007/s00134-020-05991-x
  3. Holshue ML, BeBohlt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020;382:929-36. https://www.nejm.org/doi/full/10.1056/NEJMoa2001191
  4. Huang C, Wang Y, Li Xingwang, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497-506. https://www.thelancet.com/pdfs/journals/lancet/PIIS0140-6736(20)30183-5.pdf
  5. Young BE, Ong SWX, Kalimuddin S, et al. Epideomiologic features and clinical course of patients infected with SARS-CoV-2 Singapore. JAMA, March 3, 2020. Doi.10.1001/jama.2020.3204 https://www.ncbi.nlm.nih.gov/pubmed/32125362
  6. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical chacteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020;395:507-13. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)30211-7/fulltext
  7. Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl Med 2020, Feb 28, 2020. https://www.nejm.org/doi/full/10.1056/NEJMoa2002032
  8. Zhang J, Zhou L, Yang Y, et al. Therapeutic and triage strategies for 2019 novel coronavirus disease in fever clinics. Lancet 2020;8: e11-e12. https://www.thelancet.com/journals/lanres/article/PIIS2213-2600(20)30071-0/fulltext 9.
  9. Peng QY, Wang XT, Zhang LN, et al. Findings of lung ultrasonography of novel corona virus pneumonia during the 2019-2020 epidemic. Intensive Care Med 2020. https://doi.org/10.1007/s00134-020-05996-
Key clinical pearls in the medical management of hospitalized patients with coronavirus (Covid-19) infection

What are some of the major changes in the 2016 Infectious Diseases Society of America and the American Thoracic Society guidelines on pneumonia in hospitalized patients?

The most noticeable change is the elimination of the concept of health-care associated pneumonia (HCAP) altogether1. This action is in part related to the fact that many patients with HCAP were not at high risk for multi-drug resistant organisms (MDROs) , and that individual patient risk factors, not mere exposure to healthcare facilities, were better determinant of  the need for broader spectrum antimicrobials.

Other noteworthy points in the guidelines include:

  • Although hospital-associated pneumonia (HAP) is still defined as a pneumonia not incubating at the time of admission and occurring 48 hrs or more following hospitalization, it now only refers to non-VAP cases; VAP cases are considered a separate category.
  • Emphasis is placed on each hospital generating antibiograms to guide providers with respect to the optimal choice of antibiotics.
  • Despite lack of supportive evidence, the guidelines recommend obtaining respiratory samples for culture in patients with HAP.
  • Prior intravenous antibiotic use within 90 days is cited as the only consistent risk factor for MDROs, including methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas sp.

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Reference

  1. Kalil AC, Metersky ML, Klompas M, et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis 2016 ;63:e61-e111.  Advance Access published July 14, 2016. https://www.ncbi.nlm.nih.gov/pubmed/27418577
What are some of the major changes in the 2016 Infectious Diseases Society of America and the American Thoracic Society guidelines on pneumonia in hospitalized patients?

What is the sensitivity of nose swabs in detecting methicillin-resistant Staphylococcus aureus (MRSA) pneumonia?

In MRSA pneumonia, the sensitivity of nasal swab PCR may vary from as low as 24.2% to 88% (1-3). A 2018 meta-analysis found an overall sensitivity of 70.9% (community-acquired pneumonia/healthcare-associated pneumonia [HCAP] 85%, ventilator-associated pneumonia 40%) with overall negative predictive value of 96.5% (based on an overall MRSA pneumonia prevalence of 10%) (4). 

A single center  study involving  patients with possible HCAP and a low clinical pulmonary infection score (CPIS) — for whom antibiotics may not be necessary anyway (5)—suggested that discontinuation of empiric vancomycin in patients without an adequate respiratory culture and a negative nose and throat culture may be reasonable (6).

However, a prospective study of ICU patients concluded that “clinicians cannot reliably use the results of initial negative MRSA nasal swab results to withhold empirical MRSA coverage from patients who otherwise are at risk for MRSA infection” (3).

The previously cited 2018 meta-analysis study (4) cautions against use of MRSA screening in patients with structural lung disease (eg, cystic fibrosis or bronchiectasis) because colonization may be more frequent in the lower respiratory tract in these patients and screening tests may therefore be discordant (4).

Collectively, the available data suggest that it is reasonable to use a negative MRSA screen to help exclude pneumonia due to this pathogen in patients in whom MRSA infection is not highly suspected or those who are not severely ill.

 

References

  1. Rimawi RH, Ramsey KM, Shah KB, et al. Correlation between methicillin-resistant Staphylococcus aureus nasal sampling, and S. aureus pneumonia in the medical intensive care unit. Infect Control Hosp Epidemiol 2014;35:590-92. https://www.ncbi.nlm.nih.gov/pubmed/24709733
  2. Dangerfield B, Chung A, Webb B, et al. Predictive value of methicillin-resistant Staphylococcus aureus (MRSA) nasal swab PCR assay for MRSA pneumonia. Antimicrob Agents Chemother 2014;58:859-64. https://www.ncbi.nlm.nih.gov/pubmed/24277023
  3. Sarikonda KV, Micek ST, Doherty JA, et al. Methicillin-resistant Staphylococcus aureus nasal colonization is a poor predictor of intensive care unit-acquired methicillin-resistant Staphylococcus aureus infections requiring antibiotic treatment. Crit Care Med 2010;38:1991-1995. https://www.ncbi.nlm.nih.gov/pubmed/20683260
  4. Parente DM Cunha CB Mylonakis E et al. The clinical utility of methicillin-resistant Staphylococcus aureus (MRSA) nasal screening to rule out MRSA pneumonia: A diagnostic meta-analysis with antimicrobial stewardship implications. Clin Infect Dis 208;67:1-7.
  5. Napolitano LM. Use of severity scoring and stratification factors in clinical trials of hospital-acquired and ventilator-associated pneumonia. Clin Infect Dis 2010;51:S67-S80. https://www.ncbi.nlm.nih.gov/pubmed/20597675
  6. Boyce JM, Pop O-F, Abreu-Lanfranco O, et al. A trial of discontinuation of empiric vancomycin therapy in patients with suspected methicillin-resistant Staphylococcus aureus health care-associated pneumonia. Antimicrob Agents Chemother 2013;57:1163-1168. http://aac.asm.org/content/57/3/1163.full.pdf
What is the sensitivity of nose swabs in detecting methicillin-resistant Staphylococcus aureus (MRSA) pneumonia?