Key clinical pearls in the medical management of hospitalized patients with coronavirus (Covid-19) infection

First, a shout-out to dedicated healthcare workers everywhere who have selflessly given of themselves to care for the sick during this pandemic. Thank you! Together, I know we will get through it!

Although our understanding of Covid-19 infection is far from complete, in the spirit of clarity and brevity of my posts on Pearls4Peers, here are some key points I have gleaned from review of existing literature and the CDC that may be useful as we care for our hospitalized patients with suspected or confirmed Covid-19 infection.

  • Isolation precautions.1 Per CDC, follow a combination of airborne (particularly when aerosol generating procedures is anticipated, including nebulizer treatment) and contact precaution protocols. Routinely use masks or respirators, such as N-95s (subject to local availability and policy) and eye protection. Don gowns (subject to local availability and policy) and gloves and adhere to strict hand hygiene practices.

 

  • Diagnostic tests1-9
    • Laboratory tests. Routine admission labs include CBC, electrolytes, coagulation panels and liver and renal tests. Other frequently reported labs include LDH, C-reactive protein (CRP) and procalcitonin. Testing for high sensitivity troponin I has also been performed in some patients, presumably due to concern over ischemic cardiac injury or myocarditis.2 Check other labs as clinically indicated.
    • Chest radiograph/CT chest. One or both have been obtained in virtually all reported cases with CT having higher sensitivity for detection of lung abnormalities.
    • EKG. Frequency of checking EKGs not reported in many published reports thought 1 study reported “acute cardiac injury” in some patients, based in part on EKG findings.4 Suspect we will be checking EKGs in many patients, particularly those who are older or are at risk of heart disease.
    • Point-of-care ultrasound (POCUS). This relatively new technology appears promising in Covid-19 infections, including in rapid assessment of the severity of pneumonia or ARDS at presentation and tracking the evolution of the disease. 9 Don’t forget to disinfect the probe between uses!

 

  • Treatment 1-8
    • Specific therapies are not currently available for treatment of Covid-19 infections, but studies are underway.
    • Supportive care includes IV fluids, 02 supplementation and nutrition, as needed. Plenty of emotional support for patients and their families will likely be needed during these times.
    • Antibiotics have been used in the majority of reported cases, either on admission or during hospitalization when superimposed bacterial pneumonia or sepsis could not be excluded.
      • Prescribe antibiotics against common community-acquired pneumonia (CAP) pathogens, including those associated with post-viral/influenza pneumonia such as Streptococcus pneumoniae (eg, ceftriaxone), and Staphylococcus aureus (eg, vancomycin or linezolid if MRSA is suspected) when concurrent CAP is suspected.
      • Prescribe antibiotics against common hospital-acquired pneumonia (HAP) (eg, vancomycin plus cefepime) when HAP is suspected.
    • Corticosteroids should be avoided because of the potential for prolonging viral replication, unless indicated for other reasons such as COPD exacerbation or septic shock. 1
    • Monitor for deterioration in clinical status even when your hospitalized patient has relatively minor symptoms. This is because progression to lower respiratory tract disease due to Covid-19 often develops during the 2nd week of illness (average 9 days).
    • ICU transfer may be necessary in up to 30% of hospitalized patients due to complications such as ARDS, secondary infections, and multi-organ failure.

 

Again, thank you for caring for the sick and be safe! Feel free to leave comments or questions.

 

 Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 

References

  1. CDC. Interim clinical guidance for management of patients with confirmed coronavirus disease (COVID-19). https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-patients.html
  2. Ruan Q, Yang K, Wang W, Jiang L, et al. Clinical predictors of mortality due to COVID-19 based on analysis of data of 150 patients with Wuhan, China. Intensive Care Med 2020. https://link.springer.com/article/10.1007/s00134-020-05991-x
  3. Holshue ML, BeBohlt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020;382:929-36. https://www.nejm.org/doi/full/10.1056/NEJMoa2001191
  4. Huang C, Wang Y, Li Xingwang, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497-506. https://www.thelancet.com/pdfs/journals/lancet/PIIS0140-6736(20)30183-5.pdf
  5. Young BE, Ong SWX, Kalimuddin S, et al. Epideomiologic features and clinical course of patients infected with SARS-CoV-2 Singapore. JAMA, March 3, 2020. Doi.10.1001/jama.2020.3204 https://www.ncbi.nlm.nih.gov/pubmed/32125362
  6. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical chacteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020;395:507-13. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)30211-7/fulltext
  7. Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl Med 2020, Feb 28, 2020. https://www.nejm.org/doi/full/10.1056/NEJMoa2002032
  8. Zhang J, Zhou L, Yang Y, et al. Therapeutic and triage strategies for 2019 novel coronavirus disease in fever clinics. Lancet 2020;8: e11-e12. https://www.thelancet.com/journals/lanres/article/PIIS2213-2600(20)30071-0/fulltext 9.
  9. Peng QY, Wang XT, Zhang LN, et al. Findings of lung ultrasonography of novel corona virus pneumonia during the 2019-2020 epidemic. Intensive Care Med 2020. https://doi.org/10.1007/s00134-020-05996-
Key clinical pearls in the medical management of hospitalized patients with coronavirus (Covid-19) infection

When should I consider a switch to oral antibiotics and discharge from hospital in my recently admitted elderly patient with community-acquired pneumonia (CAP)?

A frequently used validated set of clinical stability criteria in patients with CAP and supported by the 2019 ATS/IDSA CAP guidelines consists of a temperature ≤37.8 ᵒC (100.0 ᵒF) AND no more than 1 CAP-related sign of clinical instability as listed below: 1-3

  • Heart rate >100/min
  • Systolic blood pressure <90 mm Hg
  • Respiration rate >24 breaths/min
  • Arterial oxygen saturation <90% or Pa02<60 mm Hg (room air)

Using these criteria, the risk of clinical deterioration serious enough to necessitate transfer to an intensive care unit may be 1% or less, 1 while failure to achieve clinical stability within 5 days is associated with higher mortality and worse clinical outcome. 2 The median time to clinical stability (as defined) for CAP treatment is 3 days.1  

A 2016 randomized-controlled trial involving patients hospitalized with CAP found that implementation of above clinical stability criteria was associated with safe discontinuation of antibiotics after a minimum of 5 days of appropriate therapy.

Potential limitations of the above study include heavy use of quinolones (80%), underrepresentation of patients with severe CAP (Pneumonia Risk Index, PSI, V), and exclusion of nursing home residents, immunosuppressed patients, those with chest tube, or infection caused by less common organisms, such as Staphylococcus aureus or Pseudomonas aeruginosa.

Lack of clinical stability after 5 days of CAP treatment should prompt evaluation for complications of pneumonia (eg, empyema, lung abscess), infection due to  organisms resistant to selected antibiotics, or an alternative source of infection/inflammatory/poor response. 2

References

  1. Halm, EA, Fine MJ, Marrie TJ, et al. Time to clinical stability in patients hospitalized with community-acquired pneumonia: implications for practice guidelines. JAMA 1998;279:279:1452-57. https://reference.medscape.com/medline/abstract/9600479
  2. Metlay JP, Waterer GW, Long AC, et al. Diagnosis and treatment of adults with community-acquired pneumonia. Am J Respir Crit Care Med 2019;200:e45-e67. https://www.ncbi.nlm.nih.gov/pubmed/31573350
  3. Uranga A, Espana PP, Bilbao A, et al. Duration of antibiotic treatment in community-acquired pneumonia. A multicenter randomized clinical trial. JAMA Intern Med 2016;176:1257-65. https://www.ncbi.nlm.nih.gov/pubmed/27455166/
When should I consider a switch to oral antibiotics and discharge from hospital in my recently admitted elderly patient with community-acquired pneumonia (CAP)?

How long should I treat my patient with urinary tract infection and E. Coli bacteremia?

Although traditionally 7 to 14 days of antibiotic therapy has been recommended for Gram-negative bacteremia, more recent studies suggest that shorter antibiotic treatment courses are as effective as longer treatments for a variety of infections, particuarly those due to Enterobacteriaceae (eg, E. Coli, Klebsiella sp) in patients with low severity illness (1). 

Keep in mind that short course therapy may not apply to all patients with UTI and bacteremia, such as those with prostatitis (not included in the most recent study [1,2]), which requires longer course of antibiotics (3)

 
A 2019 randomized-controlled study involving primarily patients with bacteremia caused by E. Coli or Klebsiella sp. (~75%) with most cases associated with UTI (~70%) found that 7 days was as effective as 14 days of treatment in hemodynamically stable patients who are afebrile for at least 48 hours without an ongoing focus of infection (1). More specifically, there was no significant difference between the 2 groups in the rates of relapse of bacteremia or mortality at 14 or 28 days.

 
An accompanying editorial concluded that “7 days of treatment may be sufficient for hospitalized, non-critically ill patients with Gram-negative bacteremia and with signs of early response to treatment” (4)  Again, the accent should be on hemodynamically stable patients who respond rapidly to treatment. 

 
Bonus Pearl: While on the subject of shorter course antibiotic therapy, a 2016 “mantra” article nicely summarizes more recent suggestions for common infectious disease conditions (5). Obviously, clinical judgment should be exercised in all cases.
• Community-acquired pneumonia                               3-5 days (vs 7-10 days)
• Nosocomial pneumonia                                                 8 days or less (vs 10-15 days)
• Pyelonephritis                                                                  5-7 days (vs 10-14 days)
• Intraabdominal infection                                             4 days (vs 10 days)
• COPD acute exacerbation                                             5 days or less (vs >6 days)
• Acute bacterial sinusitis                                               5 days (vs 10 days)
• Cellulitis                                                                            5-6 days (vs 10 days)

 

 

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References
1. Yahav D, Franceschini E, Koppel F, et al. Seven versus 14 days of antibiotic therapy for uncomplicated Gram-negative bacteremia: A noninferiority randomized controlled trial. Clin Infect Dis 2019; 69:1091-8. https://academic.oup.com/cid/article/69/7/1091/5237874       2. Yahav D, Mussini C, Leibovici L, et al. Reply to “Should we treat bacteremic prostatitis for 7 days”.  Clin Infect Dis 2010;70:751-3. DOI:10:1093/cid/ciz393.

3.  De Greef J, Doyen L, Hnrard S, et al. Should we treat bacteremic prostatitis for 7 days? Clin Infect Dis 2020;70:351https://academic.oup.com/cid/article-abstract/70/2/351/5488067?redirectedFrom=fulltext
4. Daneman D, Fowler RA. Shortening antibiotic treatment durations for bacteremia. Clin Infect Dis 2019;69:1099-1100. https://academic.oup.com/cid/article-abstract/69/7/1099/5237877?redirectedFrom=fulltext
5. Spellberg B. The new antibiotic mantra: “ Shorter is better”. JAMA Intern Med 2016;176:1254-55. https://jamanetwork.com/journals/jamainternalmedicine/article-abstract/2536180

How long should I treat my patient with urinary tract infection and E. Coli bacteremia?

Should I routinely select antibiotics with activity against anaerobes in my patients with presumed aspiration pneumonia?

Anaerobes have been considered a major cause of aspiration pneumonia (AP) based on studies published in 1970’s (1-3). More recent data, however, suggest that anaerobes no longer play an important role in most cases of AP (4-7) and routine inclusion of specific anti-anaerobic drugs in their treatment is no longer necessary.

 
An important reason for anaerobes not playing an important role in AP in the current era is the change in the demographics of patients who may be affected. Patients reported in older studies often suffered from alcohol use disorder, drug ingestion, seizure disorders and acute cerebrovascular accident. In contrast, more recent data show that AP often occurs in nursing home residents, the elderly with cognitive impairment, and those with dysphagia, gastrointestinal dysmotility or tube feeding (8,9).

 
In addition, many cases of AP reported in older studies involved delay of 4 or more days before seeking medical attention and, not surprisingly, often presented with lung abscess, necrotizing pneumonia, empyema, or putrid sputum, features that are relatively rare in the current era.

 
Further supporting the diminishing role of anaerobes in AP, are recent microbiological studies of the respiratory tract in AP revealing the infrequent isolation of anaerobes and, even when isolated, often coexisting with aerobic bacteria. The latter observation is important because, due to the alteration in the redox potential (9,10), treatment of aerobic bacteria alone may lead to less oxygenation consumption and less favorable environment for survival of anaerobes in the respiratory tract.

 
We should also always consider the potential adverse effects of unnecessary antibiotics with anaerobic activity in our frequently debilitated patients, including gastrointestinal dysbiosis (associated with Clostridiodes difficile infections and overgrowth of antibiotic-resistant pathogens such as vancomycin-resistant enterococci (VRE), hypersensitivity reactions, drug interactions, and central nervous system toxicity (11,12).
Thus, the weight of the evidence does not justify routine anaerobic coverage of AP in today’s patients.

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References
1. Bartlett JG, Gorbach SL, Finegold SM. The bacteriology of aspiration pneumonia. Am J Med. 1974;56(2):202-7. https://www.ncbi.nlm.nih.gov/pubmed/4812076
2. Bartlett JG, Finegold SM. Anaerobic pleuropulmonary infections. Medicine (Baltimore). 1972;51(6):413-50. https://www.ncbi.nlm.nih.gov/pubmed/4564416
3. Bartlett JG, Gorbach SL. The triple threat of aspiration pneumonia. Chest. 1975;68(4):560-6. https://www.ncbi.nlm.nih.gov/pubmed/1175415
4. Finegold SM. Aspiration pneumonia. Rev Infect Dis. 1991;13 Suppl 9:S737-42. https://www.ncbi.nlm.nih.gov/pubmed/1925318
5. Bartlett JG. How important are anaerobic bacteria in aspiration pneumonia: when should they be treated and what is optimal therapy. Infect Dis Clin North Am. 2013;27(1):149-55. https://www.ncbi.nlm.nih.gov/pubmed/23398871
6. El-Solh AA, Pietrantoni C, Bhat A, Aquilina AT, Okada M, Grover V, et al. Microbiology of severe aspiration pneumonia in institutionalized elderly. Am J Respir Crit Care Med. 2003;167(12):1650-4. https://www.ncbi.nlm.nih.gov/pubmed/12689848
7. Marik PE, Careau P. The role of anaerobes in patients with ventilator-associated pneumonia and aspiration pneumonia: a prospective study. Chest. 1999;115(1):178-83. https://www.ncbi.nlm.nih.gov/pubmed/9925081
8. Bowerman TJ, Zhang J, Waite LM. Antibacterial treatment of aspiration pneumonia in older people: a systematic review. Clin Interv Aging. 2018;13:2201-13. https://www.ncbi.nlm.nih.gov/pubmed/30464429
9. Mandell LA, Niederman MS. Aspiration Pneumonia. N Engl J Med. 2019 Feb 14;380(7):651-663. doi: 10.1056/NEJMra1714562. https://www.ncbi.nlm.nih.gov/pubmed/30763196
10. Walden, W. C., & Hentges, D. J. (1975). Differential effects of oxygen and oxidation-reduction potential on the multiplication of three species of anaerobic intestinal bacteria. Applied microbiology, 30(5), 781–785. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC187272/
11. Sullivan A, Edlund C, Nord CE. Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect Dis. 2001;1(2):101-14. https://www.ncbi.nlm.nih.gov/pubmed/11871461
12. Bhalla A, Pultz NJ, Ray AJ, Hoyen CK, Eckstein EC, Donskey CJ. Antianaerobic antibiotic therapy promotes overgrowth of antibiotic-resistant, gram-negative bacilli and vancomycin-resistant enterococci in the stool of colonized patients. Infect Control Hosp Epidemiol. 2003;24(9):644-9. https://www.ncbi.nlm.nih.gov/pubmed/14510245

 

Contributed by Amar Vedamurthy, MD, MPH, Mass General Hospital, Boston, MA

Should I routinely select antibiotics with activity against anaerobes in my patients with presumed aspiration pneumonia?

Is meropenem a good choice of antibiotic for treatment of my patient’s intraabdominal infection involving enterococci?

Although meropenem is a broad spectrum antibiotic that covers many gram-negative and gram-positive organisms as well as anaerobes, its activity against enterococci is generally poor and leaves much to be desired.

In a study of ampicillin-sensitive E. faecalis isolates from hospitalized patients, only 36% of isolates were considered susceptible (MIC≤4 mg/L); activity against E. faecium isolates was similarly poor.1 Several other studies have reported the suboptimal activity of meropenem against both E. faecalis and E. faecium, 2-4 with susceptibility rates as low as 8.6% depending on the MIC break point used.3

A popular textbook and a handbook on infectious diseases also do not recommend the use of meropenem for treatment of enterococcal infections. 5,6

Of interest, the package insert states that meropenem is indicated for complicated skin and soft tissue infections due to a variety of organisms, including E. faecalis (vancomycin-susceptible isolates only), but not for complicated intra-abdominal infections or meningitis due this organism.7

In our patient with intraabdominal infection,  we may consider piperacillin-tazobactam instead.  Piperacillin-tazobactam is a broad spectrum antibiotic with excellent coverage against anaerobes and ampicillin-susceptible E. faecalis.1,8  

 

References

  1. Endtz HP, van Dijk WC, Verbrugh HA, et al. Comparative in-vitro activity of meropenem against selected pathogens from hospitalized patients in the Netherlands. J Antimicrob Chemother 1997;39:149-56. https://www.ncbi.nlm.nih.gov/pubmed/9069534
  2. Pfaller MA, Jones RN. A review of the in vitro activity of meropenem and comparative antimicrobial agents tested against 30,254 aerobic and anaerobic pathogens isolated world wide. Diag Microbiol Infect Dis 1997;28:157-63. https://www.ncbi.nlm.nih.gov/pubmed/9327242
  3. Hallgren A, Abednazari H, Ekdahl C, et al. Antimicrobial susceptibility patterns of enterococci in intensive care units in Sweden evaluated by different MIC breakpoint systems. J Antimicrob Chemother 2001;48:53-62. https://www.ncbi.nlm.nih.gov/pubmed/11418512
  4. Hoban DJ, Jones RN, Yamane N, et al. In vitro activity of three carbapenem antibiotics comparative studies with biapenem (L-627), imipenem, and meropenem against aerobic pathogens isolated worldwide. Diag Microbiol Infect Dis 993;17:299-305.https://www.ncbi.nlm.nih.gov/pubmed/8112045
  5. Chambers HF. Carbapenem and monobactams. In Mandell GL et al. eds. Principles and practice of infectious diseases. 2010, pp 341-45.
  6. Cunha CB, Cunha BA. Antibiotic essentials. 2017, pp 689-91.
  7. Meropenem.http://online.lexi.com/lco/action/doc/retrieve/docid/patch_f/7253?searchUrl=%2Flco%2Faction%2Fsearch%3Fq%3Dmeropenem%26t%3Dname
  8. Perry CM, Markham A. Piperacillin/tazobactam. Drugs 1999;57:805-43. https://link.springer.com/article/10.2165%2F00003495-199957050-00017

If you liked this post, sign up under MENU and catch future pearls straight into your mailbox!

Is meropenem a good choice of antibiotic for treatment of my patient’s intraabdominal infection involving enterococci?

Is my hospitalized patient with possible pneumonia at risk of Clostridium difficile-associated disease after only 1-3 days of empiric antibiotic therapy?

Yes! Even relatively brief duration of antibiotic therapy may increase the risk of Clostridium difficile-associated disease (CDAD) in a susceptible host.
In a study of hospitalized patients with new-onset diarrhea, prior exposure to levofloxacin and cefazolin was significantly associated with CDAD with the median duration of therapy for levofloxacin of 3 days (range 1-18 days), and for cefazolin 2 days (range 1-3 days) (1). Similarly, a study in hospitalized patients during a CDAD epidemic found a significantly increased risk of CDAD among patients who received fluoroquinolones for only 1-3 days (hazard ratio 2.4) with a 95% confidence interval (1.6-3.6) that overlapped 4-6 days and ≥ 7 days treatment groups (2). Yet another study found no significant difference in the risk of CDAD between those on antibiotic for < 4 days vs 4-7 days of antibiotics (3). CDAD following a single dose of cefazolin has also been reported (4).
Of interest, laboratory studies in mice have shown a profound alteration of intestinal microbiota following a single dose of clindamycin, resulting in increased susceptibility to C. difficile colitis (5).
So although duration of antibiotic therapy is an important factor in CDAD (3, 6) and we should minimize the duration of antibiotic therapy whenever possible, not starting antibiotics in the absence of clear indication is even better!

References
1. Manian FA, Aradhyula S, Greisnauer S, et al. Is it Clostridium difficile infection or something else? A case-control study of 352 hospitalized patients with new-onset diarrhea. S Med J 2007;100:782-786. https://www.ncbi.nlm.nih.gov/pubmed/17713303
2. Pepin J, Saheb N, Coulombe MA, et al. Emergence of fluoroquinolones as the predominant risk factor for Clostridium difficile-associated diarrhea: a cohort study during an epidemic in Quebec. Clin Infect Dis 2005;41:1254-60. https://www.ncbi.nlm.nih.gov/pubmed/16206099
3. Stevens V, Dumyati G, Fine LS, et al. Cumulative antibiotic exposures over time and the risk of Clostridium difficile infection. Clin Infect Dis 2011;53:42-48. https://www.ncbi.nlm.nih.gov/pubmed/21653301
4. Mcneeley SG, Anderson GD, Sibai BM. Clostridium difficile colitis associated with single dose cefazolin prophylaxis. Ob Gynecol 1985;66:737-8. https://www.ncbi.nlm.nih.gov/pubmed/4058831
5. Buffie CG, Jarchum I, Equinda M, et al. Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect Immun 2011;80: 62-73. https://www.ncbi.nlm.nih.gov/pubmed/22006564
6. Chalmers JD, Akram AR, Sinanayagam A, et al. Risk factors for Clostridium difficile infection in hospitalized patients with community-acquired pneumonia. J Infect 2016;73:45-53. https://www.ncbi.nlm.nih.gov/pubmed/27105657

Disclosure: The contributor of this post was a coinvestigator of a cited study (ref. 1).

If you liked this post, sign up under menu and get future pearls straight into your mailbox!

Is my hospitalized patient with possible pneumonia at risk of Clostridium difficile-associated disease after only 1-3 days of empiric antibiotic therapy?

My elderly patient on chronic warfarin with recent hospitalization for soft tissue infection is now readmitted with gastrointestinal bleed and a newly-discovered supra-therapeutic INR? Why did her INR jump?

Assuming no recent changes in the dose of warfarin, one potential culprit may be her recent antibiotic exposure. Of the long list of antibiotics associated with elevated INR, quinolones (e.g. ciprofloxacin, levofloxacin), trimethoprim-sulfamethoxazole, macrolides (e.g. azithromycin), and azole antifungals (e.g. fluconazole) are generally thought to carry the highest risk of warfarin toxicity, while amoxacillin and cephalexin may be associated with a more modest risk. 1-3

Other drugs such as amiodarone (Did she have atrial fibrillation during her recent hospitalization?), acetaminophen (Has she been receiving at least 2 g/day for several consecutive days?), and increasing dose of levothyroxine (Was she thought to be hypothyroid recently?) should also be considered.3,4

Also remember to ask about herbal supplements (eg, boldo-fenugreek, dong quai, danshen) that may potentiate the effect of warfarin. 3 Of course, poor nutrition in the setting of recent illness might have also played a role.5

As far as the mechanisms for drug interaction with warfarin, some drugs act as cytochrome p450 inhibitors (thus reducing the metabolism of warfarin), while others influence the pharmacodynamics of warfarin by inhibiting the synthesis or increasing the clearance of vitamin K-2 dependent coagulation factors.3

Antibiotics may increase the risk of major bleeding through disruption of intestinal flora that synthesize vitamin K-2 with or without interference with the metabolism of warfarin through cytochrome p450 isozymes inhibition.

Check out a related pearl on P4P: https://pearls4peers.com/2015/06/25/is-there-anyway-to-predict-a-significant-rise-in-inr-from-antibiotic-use-in-patients-who-are-also-on-warfarin  

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. Baillargeon J, Holmes HM, Lin Y, et al. Concurrent use of warfarin and antibiotics and the risk of bleeding in older adults. Am J Med. 2012 February ; 125(2): 183–189. https://www.ncbi.nlm.nih.gov/pubmed/22269622
  2. Juurlink DN. Drug interactions with warfarin: what every physician should know. CMAJ, 2007;177: 369-371. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1942100/pdf/20070814s00018p369.pdf
  3. Ageno W, Gallus AS, Wittkowsky A, et al. Oral anticoagulant therapy: Antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e44S-e88S. doi:10.1378/chest.11-2292.  https://www.ncbi.nlm.nih.gov/pubmed/22315269
  4. Hughes GJ, Patel PN, Saxena N. Effect of acetaminophen on international normalized ratio in patients receiving warfarin therapy. Pharmacotherapy 2011;31:591-7. https://www.ncbi.nlm.nih.gov/pubmed/21923443
  5. Kumar S, Gupta D, Rau SS. Supratherapeutic international normalized ratio: an indicator of chronic malnutrition due to severely debilitating gastrointestinal disease. Clin Pract. 2011;1:e21. doi:10.4081/cp.2011.e21. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3981245

 

Contributed by Rachel Weitzman, Medical Student, Harvard Medical School, Boston, MA.

My elderly patient on chronic warfarin with recent hospitalization for soft tissue infection is now readmitted with gastrointestinal bleed and a newly-discovered supra-therapeutic INR? Why did her INR jump?

In my patient with sepsis, is administration of proper antibiotics within an hour compared to 1-3 hours associated with better outcome?

The weight of the evidence based on observational studies suggests that the earlier the antibiotics are administered even within the first 3 hrs of the diagnosis of sepsis,  the better the patient outcome.

A 2017 study analyzing data from 37 studies (primarily observational) involving ~20,000 patients with severe sepsis and/or shock found a 10% increase in hospital mortality for every 1 hr delay in initiation of antibiotic therapy1. Two multicenter studies (1 in Pennsylvania2 and another in California3) and a New York State data base study involving patients with severe sepsis or septic shock4 similarly reported decreased survival with each 1- hr delay in antibiotic therapy. Another study of patients with severe sepsis found that each hour delay in first antibiotic dose administration was associated with an 8% increased risk of progression to shock5.

Despite the emphasis on the timing of the first dose of antibiotics, let’s not forget that the second dose of antibiotics should also be given on time in sepsis; a >25% delay is associated with increased mortality, length of stay and requirement for mechanical ventilation6.

So, yes, antibiotics should be given within 3 hours of diagnosis of sepsis, but within an hour followed by a timely second dose is even better!

Final Pearl: Did you know that sepsis is the 3rd leading cause of death in the US and contributes to 1 in every 2 to 3 hospital deaths7?

If you enjoyed this pearl, sign up under MENU to get future pearls right into your mailbox! 

References

  1. Kalil AC, Johnson DW, Lisco SJ, et al. Early goal-directed therapy for sepsis: a novel solution for discordant survival outcomes in clinical trials. Crit Care Med 2017;45:607-14. https://www.ncbi.nlm.nih.gov/pubmed/28067711
  2. Seymour CW, Kahn JM, Martin-Gill, et al. Delays from first medical contact to antibiotic administration for sepsis. Crit Care Med 2017;45:759-65. https://insights.ovid.com/pubmed?pmid=28234754
  3. Liu VX, Fielding-Singh V, Greene JD, et al. Th timing of early antibiotics and hospital mortality in sepsis. Am J Respir Crit care Med 2017; 196;858-63. https://www.ncbi.nlm.nih.gov/pubmed/28345952
  4. Seymour CW, Gesten F, Prescott HC, et al. Time to treatment and mortality during mandated emergency care for sepsis. N Engl J Med 2017;376:2235-44. http://www.nejm.org/doi/full/10.1056/NEJMoa1703058
  5. Whiles BB, Deis AS, Simpson SQ. Increased time to initial antimicrobial administration is associated with progression to septic shock in severe sepsis patients. Crit Care Med 2017; 45:623-29. https://www.ncbi.nlm.nih.gov/pubmed/28169944
  6. Leisman D, Huang V, Zhou Q, et al. Delayed second dose antibiotics for patients admitted from the emergency department with sepsis: prevalence, risk factors, and outcomes. Crit Care Med 2017;45:956-65. https://www.ncbi.nlm.nih.gov/pubmed/28328652
  7. https://www.ecri.org/components/HRC/Documents/Sepsis%20at%20a%20Glance.pdf

 

 

In my patient with sepsis, is administration of proper antibiotics within an hour compared to 1-3 hours associated with better outcome?

Why are patients with cirrhosis and upper gastrointestinal bleed routinely treated with antibiotics?

Cirrhotic patients with upper gastrointestinal bleed (UGIB) are at high risk of bacterial infections: 22% during the first 48 h after admission, 35-66% within 2 weeks of initial bleeding1. Antibiotic prophylaxis has been shown to reduce short term mortality, bacterial infections, early rebleeding and volume of blood transfused1-4.

But what is the exact connection between UGIB and bacterial infections in cirrhosis? One hypothesis is that UGIB sets up the host for bacterial infection via translocation (eg, due to hypovolemia), procedures necessary in the management of bleeding (eg endoscopy, sclerotherapy, IV access), and aspiration pneumonia. More intriguing is the reverse hypothesis—that is the bacterial infection serves as a trigger for UGIB.  Several lines of evidence support this view1,2.

  • Cirrhotic patients admitted for non-UGIB-related conditions may be 4x more likely to develop UGIB during their hospitalization in the presence of bacterial infection on admission4
  • Infections predispose to early variceal rebleeding
  • Infection/endotoxemia increase portal pressure, and impair liver function and coagulation
  • Commonly cited risk factors for variceal bleeding (eg, hepatic venous pressure gradient, liver function, size of varices) do not readily explain why bleeding occurs unpredictably and why despite daily increases in portal pressure (eg, following daily meals and exercises), UGIB is relatively infrequent.

 

References

  1. Thalheimer U, Triantos CK, Samonakis DN, et al. Infection, coagulation, and variceal bleeding in cirrhosis. Gut 2005;54:556-63. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1774431
  2. Goulis J. Bacterial infection in the pathogenesis of variceal bleeding. Is there any role for antibiotic prophylaxis in the cirrhotic patient. Ann Gastroenterol 2001;14:205-11. http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=0ahUKEwjNh-rhlpLVAhXGdD4KHSurANcQFgg4MAM&url=http%3A%2F%2Fwww.annalsgastro.gr%2Findex.php%2Fannalsgastro%2Farticle%2Fdownload%2F80%2F71&usg=AFQjCNHJfAyYAjuNXpwsWGrVuyuxxgJYKg
  3. Soares-Weiser K, Brezis, Tur-Kaspa R, et al. Antibiotic prophylaxis of bacterial infections in cirrhotic inpatients: a meta-analysis of randomized controlled trials. Scand J Gastroenterol 2003;38:193-200. http://www.tandfonline.com/doi/abs/10.1080/00365520310000690
  4. Anastasioua J, Williams R. When to use antibiotics in the cirrhotic patient? The evidence base. Ann Gastroenterol. 2013; 26(2): 128–131. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3959942
  5. Benavides J, Fernandez N, Colombato L, et al. Further evidence linking bacterial infection and upper G.I. bleeding in cirrhosis. Results from a large multicentric prospective survey in Argentina. J Hepatol 2003;38 (suppl 2):A176. http://www.journal-of-hepatology.eu/article/S0168-8278(03)80592-5/abstract

 

Don’t forget to sign up under menu to get future pearls right into your mailbox!

Why are patients with cirrhosis and upper gastrointestinal bleed routinely treated with antibiotics?

Should I order serum procalcitonin on my patient with suspected infection?

Two things to ask before you order procalcitonin (PCT): 1. Will it impact patient management?; and 2. If so, will the result be available in a timely manner ie, within hours not days?

Whatever the result, PCT should always be interpreted in the context of the patient’s illness and other objective data. Not surprisingly then, as a “screening” test, PCT may be more useful in patients with low pre-test likelihood of having bacterial infection, not dissimilar to the use of D-dimer in patients with low pre-test probability of pulmonary embolism1.  

Several potential clinical uses of this biomarker have emerged in recent years,  including:1,2

  • Helping decide when to initiate antibiotics in patients with upper acute respiratory tract infections and bronchitis. A normal or low PCT supports viral infection.
  • Helping decide when to discontinue antibiotics (ie, when PCT normalizes) in community-acquired or ventilator-associated pneumonia.
  • Helping monitor patient progress with an expected drop in PCT of about 50% per day (half-life ~ 24 hrs) with effective therapy.

Few caveats…

  • PCT may be unremarkable in about a third of patients with bacteremia (especially due to less virulent bacteria, including many gram-positives)3.  
  • PCT levels are lowered by high-flux membrane hemodialysis, so check a baseline level before, not after, hemodialysis4.
  • Lastly, despite its higher specificity for bacterial infections compared to other biomarkers such as C-reactive protein, PCT may be elevated in a variety of non-infectious conditions, including pancreatitis, burns, pulmonary edema or aspiration, mesenteric infarction (ischemic bowel), cardiogenic shock, and hypotension during surgery2.

 

References:

  1. Schuetz P, Muller B, Chirst-Crain M, et al. Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract infections (review). Evid-Based Child Health (A Cochrane Review Journal) 2013;8:4;1297-137. http://onlinelibrary.wiley.com/doi/10.1002/ebch.1927/pdf
  2. Gilbert GN. Use of plasma procalcitonin levels as an adjunct to clinical microbiology. J Clin Microbiol 2010;48:2325-29. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897488/pdf/0655-10.pdf
  3. Yan ST, Sun LC, Jia HB. Procalcitonin levels in bloodstream infections caused by different sources and species of bacteria. Am J Emerg Med 2017;35:779-83. https://www.ncbi.nlm.nih.gov/m/pubmed/27979420/#fft
  4. Grace E, Turner RM. Use of procalcitonin in patients with various degrees of chronic kidney disease including renal replacement therapy. Clin Infect Dis 2014;59:1761-7. https://www.ncbi.nlm.nih.gov/pubmed/25228701
Should I order serum procalcitonin on my patient with suspected infection?