Can Covid-19 exacerbate seizures in patients with epilepsy?

There have been several reports of seizure exacerbation in epileptic patients after Covid-19 infection. Seizure exacerbations have been observed in epileptic patients with uncontrolled epilepsy, as well as patients who were previously controlled with antiepileptic drugs (AEDs).1,2

In a survey of 362 epileptic patients in Wuhan, China, the site of the initial outbreak, 31 (8.6%) patients reported an increased number of seizures in the month after the public lockdown began; 16 (51.6%) of the 31 patients with seizure exacerbation had prior exposure to Covid-19.1

In a study of 439 patients with Covid-19 infection in Egypt, 19 (4.3%) patients presented with acute seizures.2  Two of the 19 seizure patients had a previous diagnosis of epilepsy, which had been controlled for up to 2 years. Interestingly, the other 17 patients had new onset seizures without a previous epilepsy diagnosis.

Covid-19 has been proposed to induce seizures by eliciting inflammatory cytokines in the central nervous system, leading to neuronal necrosis and increased glutamate levels in the cerebral cortex and hippocampus.3

Covid-19 infection may have also indirectly caused seizure exacerbations in a number of epileptic patients. Interestingly, stress related to worrying about the effect of the outbreak on a patient’s seizure activity was associated with seizure exacerbations (odds ratio: 2.5, 95% CI: 1.1-6.1)2. It is also possible that some seizure exacerbations may have been due to fear of visiting the hospital and AED withdrawal, as was demonstrated during the 2003 SARS outbreak.4

Bonus Pearl: Did you know that Guillain–Barré Syndrome has also been observed in patients with Covid-19 infection?5

Contributed by Luke Vest, Medical Student, St. Louis University Medical School

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References:

  1. Huang, S., Wu, C., Jia, Y., et al. (2020). COVID-19 outbreak: The impact of stress on seizures in patients with epilepsy. Epilepsia, 61(9), 1884-1893. https://doi.org/10.1111/epi.16635  
  2. Khedr, E. M., Shoyb, A., Mohammaden, M., & Saber, M. (2021). Acute symptomatic seizures and COVID-19: Hospital-based study. Epilepsy Res, 174, 106650. https://doi.org/10.1016/j.eplepsyres.2021.106650
  1. Nikbakht, F., Mohammadkhanizadeh, A., & Mohammadi, E. (2020). How does the COVID-19 cause seizure and epilepsy in patients? The potential mechanisms. Multiple sclerosis and related disorders, 46, 102535. https://doi.org/10.1016/j.msard.2020.102535
  2. Lai, S. L., Hsu, M. T., & Chen, S. S. (2005). The impact of SARS on epilepsy: the experience of drug withdrawal in epileptic patients. Seizure, 14(8), 557–561. https://doi.org/10.1016/j.seizure.2005.08.010
  3.  Abu-Rumeileh, S., Abdelhak, A., Foschi, M., Tumani, H., & Otto, M. (2021). Guillain-Barré syndrome spectrum associated with COVID-19: an up-to-date systematic review of 73 cases. Journal of neurology, 268(4), 1133–1170. https://doi.org/10.1007/s00415-020-10124-x   

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Mercy Hospital-St. Louis or its affiliate healthcare centers, Mass General Hospital, Harvard Medical School or its affiliated institutions, or St. Louis University Medical School. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

Can Covid-19 exacerbate seizures in patients with epilepsy?

Should I routinely select antibiotics with activity against anaerobes in my patients with presumed aspiration pneumonia?

Anaerobes have been considered a major cause of aspiration pneumonia (AP) based on studies published in 1970’s (1-3). More recent data, however, suggest that anaerobes no longer play an important role in most cases of AP (4-7) and routine inclusion of specific anti-anaerobic drugs in their treatment is no longer necessary.

 
An important reason for anaerobes not playing an important role in AP in the current era is the change in the demographics of patients who may be affected. Patients reported in older studies often suffered from alcohol use disorder, drug ingestion, seizure disorders and acute cerebrovascular accident. In contrast, more recent data show that AP often occurs in nursing home residents, the elderly with cognitive impairment, and those with dysphagia, gastrointestinal dysmotility or tube feeding (8,9).

 
In addition, many cases of AP reported in older studies involved delay of 4 or more days before seeking medical attention and, not surprisingly, often presented with lung abscess, necrotizing pneumonia, empyema, or putrid sputum, features that are relatively rare in the current era.

 
Further supporting the diminishing role of anaerobes in AP, are recent microbiological studies of the respiratory tract in AP revealing the infrequent isolation of anaerobes and, even when isolated, often coexisting with aerobic bacteria. The latter observation is important because, due to the alteration in the redox potential (9,10), treatment of aerobic bacteria alone may lead to less oxygenation consumption and less favorable environment for survival of anaerobes in the respiratory tract.

 
We should also always consider the potential adverse effects of unnecessary antibiotics with anaerobic activity in our frequently debilitated patients, including gastrointestinal dysbiosis (associated with Clostridiodes difficile infections and overgrowth of antibiotic-resistant pathogens such as vancomycin-resistant enterococci (VRE), hypersensitivity reactions, drug interactions, and central nervous system toxicity (11,12).
Thus, the weight of the evidence does not justify routine anaerobic coverage of AP in today’s patients.

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References
1. Bartlett JG, Gorbach SL, Finegold SM. The bacteriology of aspiration pneumonia. Am J Med. 1974;56(2):202-7. https://www.ncbi.nlm.nih.gov/pubmed/4812076
2. Bartlett JG, Finegold SM. Anaerobic pleuropulmonary infections. Medicine (Baltimore). 1972;51(6):413-50. https://www.ncbi.nlm.nih.gov/pubmed/4564416
3. Bartlett JG, Gorbach SL. The triple threat of aspiration pneumonia. Chest. 1975;68(4):560-6. https://www.ncbi.nlm.nih.gov/pubmed/1175415
4. Finegold SM. Aspiration pneumonia. Rev Infect Dis. 1991;13 Suppl 9:S737-42. https://www.ncbi.nlm.nih.gov/pubmed/1925318
5. Bartlett JG. How important are anaerobic bacteria in aspiration pneumonia: when should they be treated and what is optimal therapy. Infect Dis Clin North Am. 2013;27(1):149-55. https://www.ncbi.nlm.nih.gov/pubmed/23398871
6. El-Solh AA, Pietrantoni C, Bhat A, Aquilina AT, Okada M, Grover V, et al. Microbiology of severe aspiration pneumonia in institutionalized elderly. Am J Respir Crit Care Med. 2003;167(12):1650-4. https://www.ncbi.nlm.nih.gov/pubmed/12689848
7. Marik PE, Careau P. The role of anaerobes in patients with ventilator-associated pneumonia and aspiration pneumonia: a prospective study. Chest. 1999;115(1):178-83. https://www.ncbi.nlm.nih.gov/pubmed/9925081
8. Bowerman TJ, Zhang J, Waite LM. Antibacterial treatment of aspiration pneumonia in older people: a systematic review. Clin Interv Aging. 2018;13:2201-13. https://www.ncbi.nlm.nih.gov/pubmed/30464429
9. Mandell LA, Niederman MS. Aspiration Pneumonia. N Engl J Med. 2019 Feb 14;380(7):651-663. doi: 10.1056/NEJMra1714562. https://www.ncbi.nlm.nih.gov/pubmed/30763196
10. Walden, W. C., & Hentges, D. J. (1975). Differential effects of oxygen and oxidation-reduction potential on the multiplication of three species of anaerobic intestinal bacteria. Applied microbiology, 30(5), 781–785. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC187272/
11. Sullivan A, Edlund C, Nord CE. Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect Dis. 2001;1(2):101-14. https://www.ncbi.nlm.nih.gov/pubmed/11871461
12. Bhalla A, Pultz NJ, Ray AJ, Hoyen CK, Eckstein EC, Donskey CJ. Antianaerobic antibiotic therapy promotes overgrowth of antibiotic-resistant, gram-negative bacilli and vancomycin-resistant enterococci in the stool of colonized patients. Infect Control Hosp Epidemiol. 2003;24(9):644-9. https://www.ncbi.nlm.nih.gov/pubmed/14510245

 

Contributed by Amar Vedamurthy, MD, MPH, Mass General Hospital, Boston, MA

Should I routinely select antibiotics with activity against anaerobes in my patients with presumed aspiration pneumonia?