Why is Covid-19 more contagious than SARS or MERS?

From the beginning of the Covid-19 pandemic, it was evident that SARS-CoV2, the agent of Covid-19, was more contagious than other well-known coronaviruses that cause SARS or MERS. Based on a fascinating “shell disorder model, the reason may lie in the “odd” combination of “hardiness” of its membrane protein (M) (outer shell) making it more likely to survive in body fluids and environment, and resilience of its nuclear protein (N) (inner shell) making it more likely to rapidly replicate even before the immune system detects it.1

Outer shell hardiness of the M protein of SARS-CoV2 contributes to its persistence in the environment and resistance to digestive enzymes in saliva, mucus, stool, and other bodily fluids. Inner shell resilience of the N protein can lead to greater virulence through more rapid replication of viral proteins and particles. The latter is also an efficient way of evading the host immune system ie, by the time the immune system finds out there is a problem, the virus has already reproduced in high numbers in the absence of symptoms!

Long before Covid-19 pandemic, a group of scientists proposed categorization of coronaviruses into 3 major “shell disorder” categories (based on the features of the M and N proteins), correlating with their primary modes of transmission. Category A: higher levels of respiratory transmission, lower levels of fecal-oral transmission (eg. HCoV-229E, common cold coronavirus); category B: intermediate levels of respiratory and fecal-oral transmission (eg, SARS-CoV); and category C: lower levels of respiratory transmission with higher levels of fecal-oral transmission (eg, MERS).1,2  

It turns out that Covid-19 falls into category B which means that it has the potential for transmission not only through respiratory route but also through fecal-oral route and the environment. What’s “odd” about SARS-CoV2 though is that it seems to have the hardiest outer shell compared to SARS-CoV and other coronaviruses in its category.

So not only is Covid-19 more likely to be transmitted due to high viral loads in the respiratory tract even before symptoms develop, it may have an advantage over other respiratory coronaviruses by persisting in the environment when contaminated by respiratory secretions, feces or other body fluids.

Truly a “novel” virus!

Bonus Pearl: Did you know that despite being more contagious, Covid-19 is fortunately less fatal than SARS or MERS?

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. Goh GKM, Dunker AK, Foster JA, Uversy VN. Shell disorder analysis predicts greater resilience of the SARS-CoV-2 (COVID-19) outside the body and in body fluids. Microbial pathogenesis 2020;144:104177. https://pubmed.ncbi.nlm.nih.gov/32244041/
  2. Goh GKM, Dunker AK, Uversky VN. Understanding viral transmission behavior via protein intrinsic disorder prediction: Coronaviruses. J Pathol 2012;2012:738590. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3477565/

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

Why is Covid-19 more contagious than SARS or MERS?

Key clinical pearls on the management of patients suspected of or diagnosed with Covid-19 in the outpatient setting

Here are some key points to remember when managing patients with Covid-19 symptoms in the outpatient setting.  These points are primarily based on the CDC guidelines and the current literature. They may be particularly useful to primary care providers (PCP) who do not have ready access to Covid-19 test kits or radiographic imaging in the diagnosis of patients suspected of or diagnosed with Covid-19.

  • Isolation precautions. 1,6-7 Minimize chances of exposure by placing a facemask on the patient and placing them in an examination room with the door closed. Use standard and transmission-based precautions including contact and airborne protocols when caring for the patient. Put on an isolation gown and N95 filtering facepiece respirator or higher. Use a facemask if a respirator is not available. Put on face shield or goggles if available. Adhere to strict hand hygiene practices with the use of alcohol-based hand rub with greater than 60% ethanol or 70% isopropanol before and after all patient contact. If there is no access to alcohol-based hand sanitizers, the CDC recommends hand washing with soap and water as the next best practice.

 

  • Risk Factors.2-3 Older patients and patients with severe underlying medical conditions seem to be at higher risk for developing more serious complications from Covid-19 illness. Known risk factors for severe Covid-19 include age over 60 years, hypertension, diabetes, cardiovascular disease, chronic respiratory disease, and immunosuppression.

 

  • Symptoms.2,4,8,9 Reported illnesses have ranged from mild symptoms to severe illness and death. These symptoms may appear after a 2- to 14-day incubation period.
    • Fever at any time 88-99%
    • Cough 59-79%
    • Dyspnea 19-55%
    • Fatigue 23-70%
    • Myalgias 15%-44%
    • Sputum production 23-34%
    • Nausea or vomiting 4%-10%
    • Diarrhea 3%-10%
    • Headache 6%-14%
    • Sore throat 14%
    • Rhinorrhea/nasal congestion (4.8%)
    • Anosmia (undocumented percentage)

 

  • Treatment for mild illness.5 Most patients have mild illness and are able to recover at home. Counsel patients suspected to have Covid-19 to begin a home quarantine staying in one room away from other people as much as possible. Patients should drink lots of fluids to stay hydrated and rest. Over the counter medicines may help with symptoms. There is controversy regarding the safety of NSAIDs in Covid-19 (See related P4P pearl). Generally, symptoms last a few days and  patients get better after a week. There is no official guidance from the CDC or other reliable sources on how often a PCP should check in with a patient confirmed with Covid-19 and in quarantine. Please use good judgement and utilize telehealth capabilities via phone call, video call, etc… if possible.

 

  • Treatment for severe illness.3 Patients should be transferred immediately to the nearest hospital. If there is no transfer service available, a family member with appropriate personal protective equipment (PPE) precautions, should drive patient to nearest hospital for critical care services.

 

  • Ending home isolation. 5
    • Without testing: Patients can stop isolation without access to a test result after 3 things have happened. 1) No fever for at least 72 hours. This is 3 full days of no fever and without the use of medication that reduces fever; 2) Respiratory symptoms have improved.; and 3) At least 7 days have passed since symptoms first appeared.
    • With testing. 5 Home isolation may be ended after all of the following 3 criteria have been met: 1) No fever for at least 72 hours. This is 3 full days of no fever and without the use of medication that reduces fever; 2) Respiratory symptoms have improved; and 3) Negative results from at least 2 consecutive nasopharyngeal swab specimens collected more than 24 hours apart.

To all the healthcare providers out there, please be safe and stay healthy!

 

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 

Contributed by Erica Barnett, Harvard Medical Student, Boston, MA.

 

References:

  1. CDC. Evaluating and Testing Persons for Coronavirus Disease 2019 (COVID-19). https://www.cdc.gov/coronavirus/2019-nCoV/hcp/clinical-criteria.html
  2. CDC. Symptoms and Testing. https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/index.html
  3. World Health Organization. Operational Considerations for case management for COVID-19 in health facility and community. https://apps.who.int/iris/bitstream/handle/10665/331492/WHO-2019-nCoV-HCF_operations-2020.1-eng.pdf
  4. Partners in Health. Resource Guide 1: Testing, Tracing, community management. https://www.pih.org/sites/default/files/2020-03/PIH_Guide_COVID_Part_I_Testing_Tracing_Community_Managment_3_28.pdf
  5. CDC. Caring for someone at home. https://www.cdc.gov/coronavirus/2019-ncov/if-you-are-sick/care-for-someone.html
  6. CDC. Using PPE. https://www.cdc.gov/coronavirus/2019-ncov/hcp/using-ppe.html
  7. CDC. Hand Washing. https://www.cdc.gov/coronavirus/2019-ncov/hcp/hand-hygiene.html
  8. Harvard Health Publishing. COVID-19 Basics. https://www.health.harvard.edu/diseases-and-conditions/covid-19-basics
  9. Guan W, Ni Z, Hu Y, et al. Clinical characteristics of Coronavirus disease 2019 in China. N Engl J Med 2020, March 6. DOI:10.1056/NEJM022002032 https://www.ncbi.nlm.nih.gov/pubmed/32109013

 

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

Key clinical pearls on the management of patients suspected of or diagnosed with Covid-19 in the outpatient setting

How “sensitive” is the PCR in diagnosing coronavirus/Covid-19?

A definite diagnosis of Covid-19 requires viral testing, usually through PCR performed on upper (nasopharyngeal or oropharyngeal) or lower respiratory samples (sputum, bronchoalveolar lavage [BAL] fluid). Rates of positive PCR may be affected by stage of the disease and/or its severity.
Nasopharyngeal sample: This seems to be the most practical and readily available means of confirming Covid-19 diagnosis, with positive rates of ~75% during the first 2 weeks of illness in patients considered to have severe disease. For patients with mild Covid-19, a positive PCR rate of 72% has been reported during the 1st week, dropping to 54% during the 2nd week (1).
Oropharyngeal sample: Lower positive PCR rates have been observed with throat swabs, as low as ~30% in mild Covid-19 during the 2nd week of the illness and ~60% in severe disease during the first week of illness (2).
Sputum: Sputum may have the highest positive rates ranging from ~75% in mild disease during the second week of illness to ~90% during the 1st week of severe disease. The problem with sputum sampling is that less than one-third of patients with Covid-19 can provide a sample given the usually dry nature of their cough (1,4).
BAL fluid: In a limited number of patients with severe disease who had bronchoalveolar lavage sampling during the 2nd week of illness, 3 (25%) of 12 patients with positive PCR on BAL had negative upper respiratory samples (1). So in severe disease, the virus definitely prefers to replicate in the lower respiratory tract.
Potential explanations for a negative PCR include low viral titers and specimen handling. So, in patients suspected of having Covid-19 based on clinical/laboratory/radiograph grounds, a negative upper respiratory sample, particularly oropharyngeal source, should not rule out this disease.

 

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 

References

1. Yang Y, Yang M, Shen C, et al. Evaluating the accuracy of different respiratory specimens in the laboratory diagnosis and monitoring the viral shedding of 2019-nCoV infections. MedRxiv. 2020. DOI: http://doi.org/10.1101/2020.02.11.20021493
2. Ai T, Yang Z, Hou H, et al. Correlation of chest CT and RT-PCR testing in Coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases. Radiology 2020. https://pubs.rsna.org/doi/10.1148/radiol.2020200642
3. Bai HX, Hsieh B, Xiong Z, et al. Performance of radiologists in differentiaging COVID-19 from viral pneumonia on chest CT. Radiology 2020. https://pubs.rsna.org/doi/10.1148/radiol.2020200823 
4. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)30183-5/fulltext
Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

How “sensitive” is the PCR in diagnosing coronavirus/Covid-19?

What changes should I consider in my treatment of hospitalized patients with community-acquired pneumonia (CAP) in light of the 2019 guidelines of the American Thoracic society (ATS) and Infectious Diseases Society of America (IDSA)?

Compared to 2007,1 the 2019 ATS/IDSA guidelines2 propose changes in at least 4 major areas of CAP treatment in inpatients, with 2 “Do’s” and 2 “Dont’s”:

  • Do select empiric antibiotics based on severity of CAP and risk factors for methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (see related pearl on P4P)
  • Do routinely treat CAP patients who test positive for influenza with standard CAP antibiotics
  • Don’t routinely provide anaerobic coverage in aspiration pneumonia (limit it to empyema and lung abscess) (see related pearl on P4P)
  • Don’t routinely treat CAP with adjunctive corticosteroids in the absence of refractory shock

β-lactam plus macrolide is recommended for both non-severe and severe CAP.  β-lactam plus respiratory fluoroquinolone is an alternative regime in severe CAP, though not endorsed as strongly as β-lactam plus macrolide therapy (low quality of evidence).  Management per CAP severity summarized below:

  • Non-severe CAP
    • β-lactam (eg, ceftriaxone, cefotaxime, ampicillin-sulbactam and newly-added ceftaroline) plus macrolide (eg, azithromycin, clarithromycin) OR respiratory fluoroquinolone (eg, levofloxacin, moxifloxacin)
    • In patients at risk of MRSA or P. aeruginosa infection (eg, prior isolation of respective pathogens, hospitalization and parenteral antibiotics in the last 90 days or locally validated risk factors—HCAP has been retired), obtain cultures/PCR
    • Hold off on MRSA or P. aeruginosa coverage unless culture/PCR results return positive.
  • Severe CAP
    • β-lactam plus macrolide OR β-lactam plus respiratory fluoroquinolone (see above)
    • In patients at risk of MRSA or P. aeruginosa infection (see above), obtain cultures/PCR
    • Add MRSA coverage (eg, vancomycin or linezolid) and/or P. aeruginosa coverage (eg, cefepime, ceftazidime, piperacillin-tazobactam, meropenem, imipenem) if deemed at risk (see above) while waiting for culture/PCR results

Duration of antibiotics is for a minimum of 5 days for commonly-targeted pathogens and a minimum of 7 days for MRSA or P. aeruginosa infections, irrespective of severity or rapidity in achieving clinical stability.

For patients who test positive for influenza and have CAP, standard antibacterial regimen should be routinely added to antiinfluenza treatment.

For patients suspected of aspiration pneumonia, anaerobic coverage (eg, clindamycin, ampicillin-sulbactam, piperacillin-tazobactam) is NOT routinely recommended in the absence of lung abscess or empyema.

Corticosteroids are NOT routinely recommended for non-severe (high quality of evidence) or severe (moderate quality of evidence) CAP in the absence of refractory septic shock.

Related pearls on P4P:

2019 CAP guidelines on diagnostics:                                        https://pearls4peers.com/2020/02/14/what-changes-should-i-consider-in-my-diagnostic-approach-to-hospitalized-patients-with-community-acquired-pneumonia-cap-in-light-of-the-2019-guidelines-of-the-american-thoracic-society-ats-and-inf/ 

Anerobic coverage of aspiration pneumonia: https://pearls4peers.com/2019/07/31/should-i-routinely-select-antibiotics-with-activity-against-anaerobes-in-my-patients-with-presumed-aspiration-pneumonia/

References

  1. Mandell LA, Wunderink RG, Anzueto A. Infectious Disease Society of America/American Thoracic Society Consensus Guidelines on the Management guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 2007;44:S27-72. https://www.ncbi.nlm.nih.gov/pubmed/17278083
  2. Metlay JP, Waterer GW, Long AC, et al. Diagnosis and treatment of adults with community-acquired pneumonia. Am J Respir Crit Care Med 2019;200:e45-e67. https://www.ncbi.nlm.nih.gov/pubmed/31573350

 

What changes should I consider in my treatment of hospitalized patients with community-acquired pneumonia (CAP) in light of the 2019 guidelines of the American Thoracic society (ATS) and Infectious Diseases Society of America (IDSA)?

Should I routinely select antibiotics with activity against anaerobes in my patients with presumed aspiration pneumonia?

Anaerobes have been considered a major cause of aspiration pneumonia (AP) based on studies published in 1970’s (1-3). More recent data, however, suggest that anaerobes no longer play an important role in most cases of AP (4-7) and routine inclusion of specific anti-anaerobic drugs in their treatment is no longer necessary.

 
An important reason for anaerobes not playing an important role in AP in the current era is the change in the demographics of patients who may be affected. Patients reported in older studies often suffered from alcohol use disorder, drug ingestion, seizure disorders and acute cerebrovascular accident. In contrast, more recent data show that AP often occurs in nursing home residents, the elderly with cognitive impairment, and those with dysphagia, gastrointestinal dysmotility or tube feeding (8,9).

 
In addition, many cases of AP reported in older studies involved delay of 4 or more days before seeking medical attention and, not surprisingly, often presented with lung abscess, necrotizing pneumonia, empyema, or putrid sputum, features that are relatively rare in the current era.

 
Further supporting the diminishing role of anaerobes in AP, are recent microbiological studies of the respiratory tract in AP revealing the infrequent isolation of anaerobes and, even when isolated, often coexisting with aerobic bacteria. The latter observation is important because, due to the alteration in the redox potential (9,10), treatment of aerobic bacteria alone may lead to less oxygenation consumption and less favorable environment for survival of anaerobes in the respiratory tract.

 
We should also always consider the potential adverse effects of unnecessary antibiotics with anaerobic activity in our frequently debilitated patients, including gastrointestinal dysbiosis (associated with Clostridiodes difficile infections and overgrowth of antibiotic-resistant pathogens such as vancomycin-resistant enterococci (VRE), hypersensitivity reactions, drug interactions, and central nervous system toxicity (11,12).
Thus, the weight of the evidence does not justify routine anaerobic coverage of AP in today’s patients.

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References
1. Bartlett JG, Gorbach SL, Finegold SM. The bacteriology of aspiration pneumonia. Am J Med. 1974;56(2):202-7. https://www.ncbi.nlm.nih.gov/pubmed/4812076
2. Bartlett JG, Finegold SM. Anaerobic pleuropulmonary infections. Medicine (Baltimore). 1972;51(6):413-50. https://www.ncbi.nlm.nih.gov/pubmed/4564416
3. Bartlett JG, Gorbach SL. The triple threat of aspiration pneumonia. Chest. 1975;68(4):560-6. https://www.ncbi.nlm.nih.gov/pubmed/1175415
4. Finegold SM. Aspiration pneumonia. Rev Infect Dis. 1991;13 Suppl 9:S737-42. https://www.ncbi.nlm.nih.gov/pubmed/1925318
5. Bartlett JG. How important are anaerobic bacteria in aspiration pneumonia: when should they be treated and what is optimal therapy. Infect Dis Clin North Am. 2013;27(1):149-55. https://www.ncbi.nlm.nih.gov/pubmed/23398871
6. El-Solh AA, Pietrantoni C, Bhat A, Aquilina AT, Okada M, Grover V, et al. Microbiology of severe aspiration pneumonia in institutionalized elderly. Am J Respir Crit Care Med. 2003;167(12):1650-4. https://www.ncbi.nlm.nih.gov/pubmed/12689848
7. Marik PE, Careau P. The role of anaerobes in patients with ventilator-associated pneumonia and aspiration pneumonia: a prospective study. Chest. 1999;115(1):178-83. https://www.ncbi.nlm.nih.gov/pubmed/9925081
8. Bowerman TJ, Zhang J, Waite LM. Antibacterial treatment of aspiration pneumonia in older people: a systematic review. Clin Interv Aging. 2018;13:2201-13. https://www.ncbi.nlm.nih.gov/pubmed/30464429
9. Mandell LA, Niederman MS. Aspiration Pneumonia. N Engl J Med. 2019 Feb 14;380(7):651-663. doi: 10.1056/NEJMra1714562. https://www.ncbi.nlm.nih.gov/pubmed/30763196
10. Walden, W. C., & Hentges, D. J. (1975). Differential effects of oxygen and oxidation-reduction potential on the multiplication of three species of anaerobic intestinal bacteria. Applied microbiology, 30(5), 781–785. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC187272/
11. Sullivan A, Edlund C, Nord CE. Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect Dis. 2001;1(2):101-14. https://www.ncbi.nlm.nih.gov/pubmed/11871461
12. Bhalla A, Pultz NJ, Ray AJ, Hoyen CK, Eckstein EC, Donskey CJ. Antianaerobic antibiotic therapy promotes overgrowth of antibiotic-resistant, gram-negative bacilli and vancomycin-resistant enterococci in the stool of colonized patients. Infect Control Hosp Epidemiol. 2003;24(9):644-9. https://www.ncbi.nlm.nih.gov/pubmed/14510245

 

Contributed by Amar Vedamurthy, MD, MPH, Mass General Hospital, Boston, MA

Should I routinely select antibiotics with activity against anaerobes in my patients with presumed aspiration pneumonia?

How should I interpret the growth of “normal respiratory flora” from sputum of my patient with community-acquired pneumonia (CAP)?

Since the primary reason for obtaining a sputum culture in a patient with pneumonia is to sample the lower respiratory tract, you should first verify that the sputum was “adequate” by reviewing the gram stain. Absence of neutrophils (unless the patient is neutropenic) with or without epithelial cells on gram stain of sputum suggests that it may not be an adequate sample (ie, likely saliva)1, and therefore growth of normal respiratory flora (NRF) should not be surprising in this setting.  

Other potential explanations for NRF on sputum culture in patients with CAP include:2-5

  • Delay in sputum processing with possible overgrowth of oropharyngeal flora.
  • Pneumonia caused by pathogens that do not grow on standard sputum culture media (eg, atypical organisms, viruses, anaerobes).
  • Pneumonia caused by potential pathogens such as as Streptococcus mitis and Streptococcus anginosus group that may be part of the NRF.
  • Initiation of antibiotics prior to cultures (eg, in pneumococcal pneumonia).

Of note, since 2010, several studies have shown that over 50% of patients with CAP do not have an identifiable cause.3 So, growing NRF from sputum of patients with CAP appears to be common.

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. Wong LK, Barry AL, Horgan SM. Comparison of six different criteria for judging the acceptability of sputum specimens. J Clin Microbiol 1982;16:627-631. https://www.ncbi.nlm.nih.gov/pubmed/7153311
  2. Donowitz GR. Acute pneumonia. In Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases (2010). Churchill Livingstone, pp 891-916.
  3. Musher DM, Abers MS, Bartlett JG. Evolving understanding of the causes of pneumonia in adults, with special attention to the role of pneumococcus. Clin Infect Dis 2017;65: 1736-44. https://www.ncbi.nlm.nih.gov/pubmed/29028977
  4. Abers MS, Musher DM. The yield of sputum culture in bacteremic pneumococcal pneumonia after initiation of antibiotics. Clin Infect Dis 2014; 58:1782. https://www.ncbi.nlm.nih.gov/pubmed/24604901
  5. Bartlett JG, Gorbach SL, Finegold SM. The bacteriology of aspiration pneumonia. Bartlett JG, Gorbach SL, Finegold SM. Am J Med 1974;56:202-7. https://www.ncbi.nlm.nih.gov/pubmed/4812076
How should I interpret the growth of “normal respiratory flora” from sputum of my patient with community-acquired pneumonia (CAP)?

How do I interpret heavy growth of Candida sp. from sputum of my patient with COPD and pneumonia?

Chances are our patient has been on antibiotics and is being treated with either inhaled and/or systemic corticosteroids which may all contribute to yeast overgrowth in the respiratory and GI tracts.   Fortunately, in the absence of severe immunocompromised state such as neutropenia,  Candida sp. in  respiratory specimens (including those obtained by bronchoscopy) is only rarely associated with pneumonia (1,2).   So no antifungal therapy seems to be indicated in our patient, unless oral candidiasis (e.g. either thrush or the atrophic variety) is also simultaneously present.  Time to examine the mouth!

1. El-Ebiary M, Torres A, Fabregas N, et al. Significance of the isolation of Candida species from respiratory samples in critically ill, non-neutropenic  patients.  Am J Resp Crit Care Med 1997;156:583-590

2. Rello J, Wsandi ME, Diaz E, et al. The role of Candida sp. isolated from bronchoscopic samples in non-neutropenic patients. Chest 1998;114:146-49

How do I interpret heavy growth of Candida sp. from sputum of my patient with COPD and pneumonia?