How effective are face masks in reducing transmission of Covid-19?

Overall, review of data to date suggests that face masks are quite effective in reducing the transmission of coronaviruses, including SARS-CoV-2, the cause of Covid-19. A Lancet 2020 meta-analysis involving over 12,000 subjects, found that transmission of coronaviruses (SARS-CoV-2, SARS and MERS) was reduced with face masks by 85% (adjusted O.R. 0.15, 95%CI 0.07-0.34).1

More specific to Covid-19, a study from Mass General Brigham hospitals found a significant drop in healthcare worker (HCW) SARS-CoV-2 PCR positivity rate from 21.3% to 11.5% following adoption of universal masking of HCWs and patients.2

An U.S. epidemiologic survey of 2,930 unique counties plus New York City found mandating face mask use in public was associated with a significant decline in the daily Covid-19 growth rate. 3 It was estimated that more than 200,000 Covid-19 cases were averted by May 22, 2020 as a result of the implementation of these mandates.

Another 2020 meta-analysis involving 21 studies reported an overall efficacy of masks (including surgical and N-95 masks) of 80% in healthcare workers and 47% in non-healthcare workers for respiratory virus transmission (including SARS, SARS-CoV-2 and influenza).4

A criticism of above reports has been their primarily retrospective nature. A randomized-controlled Danish study found a statistically insignificant 20% reduction in incident SARS-CoV-2 infection among mask wearers (5,6).    Despite its randomized-controlled design, this study had several limitations, including relatively low transmission rate in the community and lack of universal mask wearing in public during the study period. In addition, less than one-half of participants in the mask group reported adherence to wearing masks, and there was no assurance that masks were worn correctly when they did wear them. 

At most, this study suggests that it’s not enough for the uninfected to wear masks; the infected—often with little or no symptoms— should also wear them to help curb the pandemic.

So please do your part and tell your friends and family members to do the same by masking up while we are at war with Covid-19!

Bonus Pearl: Did you know that universal wearing of masks in the public in response to a respiratory virus pandemic is nothing new?  It was adopted as far back as 100 years ago during the 1918 Spanish influenza pandemic!

References

  1. Chu DK, Akl EA, Duda S, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet 2020;395: 1973-87. https://www.thelancet.com/pdfs/journals/lancet/PIIS0140-6736(20)31142-9.pdf
  2. Wang X, Ferro EG, Zhou G, et al. Association between universal masking in a health care system and SARS-CoV-2 positivity among health care workers. JAMA 2020;324:703-4. https://jamanetwork.com/journals/jama/fullarticle/2768533
  3. Lyu W, Wehby GL. Community use of face masks and COVID-19: evidence from a natural experiment of state mandates in the US. Health Affairs 2020;39: July 16. https://www.healthaffairs.org/doi/full/10.1377/hlthaff.2020.00818
  4. Liang M, Gao L, Cheng Ce, et al. Efficacy of face mask in preventing respiratory virus transmission: A systematic review and meta-analysis. Travel Med Infect Dis 2020;36:1-8. https://pubmed.ncbi.nlm.nih.gov/32473312/ 
  5. Bundgaard H, Bundgaard JS, Tadeusz DE, et al. Effectiveness of adding a mask recommendation to other public health measures to prevent SARS-CoV-2 infection in Danish mask wearers. Ann Intern Med 2020; November 18. https://pubmed.ncbi.nlm.nih.gov/33205991/
  6. Frieden TR Cash-Goldwasser S. Of masks and methods. Ann Intern Med 2020; November 18. https://www.acpjournals.org/doi/10.7326/m20-7499

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Mercy Hospital-St. Louis or its affiliate healthcare centers. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

How effective are face masks in reducing transmission of Covid-19?

Why is Covid-19 more contagious than SARS or MERS?

From the beginning of the Covid-19 pandemic, it was evident that SARS-CoV2, the agent of Covid-19, was more contagious than other well-known coronaviruses that cause SARS or MERS. Based on a fascinating “shell disorder model, the reason may lie in the “odd” combination of “hardiness” of its membrane protein (M) (outer shell) making it more likely to survive in body fluids and environment, and resilience of its nuclear protein (N) (inner shell) making it more likely to rapidly replicate even before the immune system detects it.1

Outer shell hardiness of the M protein of SARS-CoV2 contributes to its persistence in the environment and resistance to digestive enzymes in saliva, mucus, stool, and other bodily fluids. Inner shell resilience of the N protein can lead to greater virulence through more rapid replication of viral proteins and particles. The latter is also an efficient way of evading the host immune system ie, by the time the immune system finds out there is a problem, the virus has already reproduced in high numbers in the absence of symptoms!

Long before Covid-19 pandemic, a group of scientists proposed categorization of coronaviruses into 3 major “shell disorder” categories (based on the features of the M and N proteins), correlating with their primary modes of transmission. Category A: higher levels of respiratory transmission, lower levels of fecal-oral transmission (eg. HCoV-229E, common cold coronavirus); category B: intermediate levels of respiratory and fecal-oral transmission (eg, SARS-CoV); and category C: lower levels of respiratory transmission with higher levels of fecal-oral transmission (eg, MERS).1,2  

It turns out that Covid-19 falls into category B which means that it has the potential for transmission not only through respiratory route but also through fecal-oral route and the environment. What’s “odd” about SARS-CoV2 though is that it seems to have the hardiest outer shell compared to SARS-CoV and other coronaviruses in its category.

So not only is Covid-19 more likely to be transmitted due to high viral loads in the respiratory tract even before symptoms develop, it may have an advantage over other respiratory coronaviruses by persisting in the environment when contaminated by respiratory secretions, feces or other body fluids.

Truly a “novel” virus!

Bonus Pearl: Did you know that despite being more contagious, Covid-19 is fortunately less fatal than SARS or MERS?

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. Goh GKM, Dunker AK, Foster JA, Uversy VN. Shell disorder analysis predicts greater resilience of the SARS-CoV-2 (COVID-19) outside the body and in body fluids. Microbial pathogenesis 2020;144:104177. https://pubmed.ncbi.nlm.nih.gov/32244041/
  2. Goh GKM, Dunker AK, Uversky VN. Understanding viral transmission behavior via protein intrinsic disorder prediction: Coronaviruses. J Pathol 2012;2012:738590. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3477565/

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

Why is Covid-19 more contagious than SARS or MERS?

5 Covid-19 facts worth keeping in mind as we deal with our pandemic anxiety

As an infectious disease physician who had the privilege of caring for many patients during the unsettling times of the early HIV epidemic and the more recent H1N1 pandemic influenza, I fully understand the widespread anxiety the current Covid-19 pandemic has inflicted on our society.

Here are 5 scientific facts that may be worth remembering as we try to deal with our pandemic anxiety.

 
1. On transmission in the community: For sure, Covid-19 is transmitted in the community but I am glad that it behaves more like influenza which is primarily contracted through close personal contact and droplets, and less like measles or chickenpox which are considered airborne with viral particles travelling lingering in the air for long periods of time. On average, a patient with Covid-19 may infect 2-3 susceptible contacts vs as many as 12 or more in the case of patients with measles or chickenpox (1, 2).

 
2. On transmission in healthcare settings: For sure, Covid-19 can be transmitted in the healthcare settings, just like other coronaviruses, such severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS) coronaviruses. But the good news is that, in the absence of aerosol-producing procedures (eg, intubation, nebulizer therapy) it doesn’t seem to behave like an airborne virus (see above) and adherence to droplet and contact precautions, including donning of masks, gowns, eye protection and hand hygiene has been effective (3, 4).

 
3. On surface viability after cleaning/disinfection: For sure, the novel 2019 coronavirus SARS-CoV-2, the cause of Covid-19, can be found on surfaces outside of the body. But the good news is that, in contrast to hardy viruses such as norovirus, it succumbs to common disinfection and environmental cleaning procedures. That’s because  coronaviruses have a lipid envelope that easily falls apart under usual cleaning and disinfection of surfaces. That means that simple handwashing with soap and water (minimum 20 seconds), alcohol containing hand hygiene products, detergents and diluted bleach should easily inactivate it (5-9) and that’s good!

 
4. On the course of Covid-19: For sure, Covid-19 can make people very sick and, tragically, may be fatal on occasion. But compared to diseases caused by other recent respiratory coronaviruses such as MERS or SARS, the overall mortality associated with Covid-19 is much lower (often ~ 2.0-3.0% or lower vs 36.0% for MERS and ~10.0% for SARS) (1). In fact, the majority of patients (~80%) may have no symptoms or only have mild disease (10). I am thankful that we are not dealing with a transmissible respiratory virus that has mortality rates like that of MERS.

 
5. On the timing of this pandemic: We are fortunate that this is 2020 not 1918-19 when a particularly virulent form of influenza, dubbed as “the mother of all pandemics” infected some 500 million people (a third of the world’s population at the time) and accounted for an estimated 50 million deaths (11). Imagine fighting a pandemic without the technology to identify its cause. Imagine fighting a pandemic without access to the miracles of modern science and medicine, including antibiotics for secondary bacterial pneumonia, artificial ventilation, dialysis, ICU support, and capability to screen for an infectious agent.  Imagine fighting a pandemic without scientific tools to develop effective antimicrobials or vaccines. Imagine fighting a pandemic without the luxury of the internet.

 
As unprepared as we all feel in combatting Covid-19, I take solace in the fact that our armamentarium and collective determination to mount an effective response to this pandemic has never been better. Even during these uncertain times, I reflect on what could have been and remain optimistic. Be safe!

 

 

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.


References:
1. Fauci AS, Lane HC, Redfield RR. Covid-19—Navigating the uncharted. N Eng J Med 2020. DOI:10.1056/NEJMe2002387. https://www.nejm.org/doi/full/10.1056/NEJMe2002387
2. Delamater PL, Street EJ, Leslie TF, et al. Complexity of the basic reproduction number (R0). Emerg infect Dis 2019;25:1-4. https://wwwnc.cdc.gov/eid/article/25/1/17-1901_article
3. Seto WH, Tsang D, Yung RWH, et al. Effectiveness of precautions against droplets and contact in prevention of nosocomial transmission of severe acute respiratory syndrome (SARS). Lancet 2003;361:1519-20. https://www.sciencedirect.com/science/article/pii/S0140673603131686
4. Ng K, Poon BH, Puar THK, et al. COVID-19 and the risk to health care workers: a case report. Ann Intern Med. 2020, March 16. https://annals.org/aim/fullarticle/2763329/covid-19-risk-health-care-workers-case-report
5. van Doremalen N, Bushmaker, Morris DH, et al. Aerosol and surface stability of HCoV-19 (SARS-CoV-2) compared to SARS-CoV-1. N Engl J Med 2020. https://doi.org/10.1101/2020.03.09.20033217
6. Kampf G. Efficacy of ethanol against viruses in hand disinfection. J Hosp Infect 2018;98:331-38. https://www.sciencedirect.com/science/article/pii/S0195670117304693
7. Grayson ML, Melvani S, Druce J, et al. Efficacy of soap and water and alcohol-based hand-rub preparations against live H1N1 influenza virus on the hands of human volunteers Clin Infect Dis 2009;48:285-91. https://www.ncbi.nlm.nih.gov/pubmed/19115974/
8. Service RF. Does disinfecting surfaces really prevent the spread of coronavirus? Science 2020, March 12. https://www.sciencemag.org/news/2020/03/does-disinfecting-surfaces-really-prevent-spread-coronavirus
9. CDC. Norovirus. https://www.cdc.gov/vitalsigns/norovirus/index.html
10. Guan W, Ni Z, Hu Y, et al. Clinical characteristics of Coronavirus disease 2019 in China. N Engl J Med 2020. First published Feb 28, 220, last updated March 6, 2020. https://www.nejm.org/doi/10.1056/NEJMoa2002032
11. Taubenberger JK, Morens DM. 1918 influenza: the mother of all pandemics. Emerg Infect Dis 2006;12:15-22. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3291398/

 

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

 

 

5 Covid-19 facts worth keeping in mind as we deal with our pandemic anxiety

Do statins have a role in treating novel Coronavirus infection, COVID-19?

There is currently no firm clinical evidence that statins improve the outcome of COVID-19. However, there are some theoretical reasons for believing that statins may have a role in the treatment of COVID-19.  That’s because beyond their cholesterol lowering action, statins may also have clinically relevant anti-inflammatory and antiviral (pleotropic) properties.  

Anti-inflammatory: Anti-inflammatory effect of statins is well known and is thought to occur through a variety of molecular pathways of the innate and adaptive immune systems as well as attenuation of several circulating proinflammatory cytokines.1 Although observational studies have suggested that statins lower hospitalization and mortality among outpatients hospitalized with infection, pneumonia or sepsis, several randomized controlled trials (RCTs) have failed to show any mortality benefit among ICU patients with sepsis and ARDS treated with statins.2

In contrast, an RCT involving patients with sepsis (majority with pneumonia, mean CRP 195 mg/dL) reported significant reduction in progression to severe sepsis among statin-naïve patients  placed on atorvastatin 40 mg/day at the time of hospitalization.3 So, perhaps timing of statin therapy before florid sepsis and ARDS is an important factor.  

Some have suggested that statins may decrease the fatality rate of a related Coronavirus, Middle East Respiratory Syndrome (MERS) virus, by blunting exuberant inflammatory response that may result in a fatal outcome. 4

Antiviral: Statins may also have antiviral properties, including activity against influenza, hepatitis C virus, Zika and dengue viruses.2,5 Whether statins have activity against coronaviruses such as the agent of COVID-19 is unclear at this time.

It’s interesting to note that cholesterol may have an important role in the membrane attachment, fusion and replication of many enveloped viruses, including influenza.5 Covid-19 is also an enveloped virus.

So what do we do? Based on the current data, it makes sense to continue statins in patients who have known clinical indications for their use and no obvious contraindications because of COVID-19 (eg. rhabdomyolysis).6 As for statin-naïve patients, particularly those in early stages of sepsis and increased risk of cardiovascular events, benefit may outweigh the risk.  Only proper clinical studies will give us more definitive answers.

Bonus Pearl: Did you know that lipids make up a major component of the envelope in enveloped viruses and that cholesterol makes up nearly one-half of total lipid and over 10% the total mass of influenza viruses?

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. Tousoulis D, Psarros C, Demosthenous M, et al. Innate and adaptive inflammation as a therapeutic target in vascular diseae: The emerging role of statins. J Am Coll Cardiol 2014;63:2491-2502. https://www.sciencedirect.com/science/article/pii/S0735109714011553?via%3Dihub
  2. Fedson DS. Treating the host response to emerging virus diseases: lessons learned from sepsis, pneumonia, influenza and Ebola. Ann Transl Med 2016;4:421. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5124618/pdf/atm-04-21-421.pdf
  3. Patel JM, Snaith C, Thickette DR. Randomized double-blind placebo-controlled trial of 40 mg/day of atorvastatin in reducing the severity of sepsis in ward patients (ASEPSIS Trial) Critical Care 2012;16:R231. https://ccforum.biomedcentral.com/track/pdf/10.1186/cc11895
  4. Espano E, Nam JH, Song EJ, et al. Lipophilic statins inhibit Zika virus production in Vero cells. Scientific Reports 2019;9:11461. https://www.nature.com/articles/s41598-019-47956-1
  5. Sun X, Whittaker GR. Role for influenza virus envelope cholesterol in virus entry and infection. J Virol 2003;77:12543-12551. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC262566/
  6. Virani SS. Is there a role for statin therapy in acute viral infections. Am Coll Cardiol March 18, 2020. https://www.acc.org/latest-in-cardiology/articles/2020/03/18/15/09/is-there-a-role-for-statin-therapy-in-acute-viral-infections-covid-19

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

Do statins have a role in treating novel Coronavirus infection, COVID-19?

What existing drugs are currently being evaluated or repurposed for treatment of Coronavirus (Covid-19) infection?

There are currently no drugs specifically approved for treatment of Covid-19 infections. However, there are legions of therapies that are being considered, tried, and/or evaluated in clinical trials. Many experts believe a combination of drugs may be necessary for optimal therapy. Here is my select list of potentially promising drugs from gleaning the literature and online resources to date.1-16

  • Remdisivir: A broad spectrum investigational nucleoside analogue, originally developed to treat a variety of viruses, including Ebola, SARS and MERS. Active in vitro against Covid-19. Favorable results have been reported in some cases, including the first reported patient in the U.S.
  • Chloroquine: An old drug used for its antimalarial activity as well as for its immune modulation and anti-inflammatory properties. Has also been found to be active in mice against a variety of viruses, including certain enteroviruses, Zika virus, influenza A H5N1.  Active in vitro against Covid-19, though hydroxychloroquine may be more effective. Evidence for its efficacy in treating acute viral infections in humans is currently lacking.
  • Lopinavir/ritonavir: Protease inhibitor combo used in HIV infection with possibly some benefit in the treatment of SARS. Recent study showed no significant efficacy in severe Covid-19 disease. 
  • Interferon-alpha: An antiviral cytokine used against hepatitis B and C viruses. May be more effective for prophylaxis than post-exposure, based on experimental animal studies involving SARS.
  • Ribavirin: Another nucleoside analogue approved for hepatitis C (in combination with other drugs) and respiratory syncytial virus (RSV) infections but also evaluated in SARS and MERS. Has been reported to be active in vitro against Covid-19.
  • Sofosbuvir: Inhibits RNA-dependent RNA polymerase. Approved for treatment of hepatitis C, but also with in vitro activity against Covid-19.
  • Tocilizumab: Anti-interleukin-6 monoclonal antibody used in rheumatoid and giant cell arthritis. Theoretically, may mitigate cytokine storm observed in some patients during the later stages of Covid-19 disease.

Of course, there are many more drugs some of which would not be expected to be effective against Covid-19, based on what we so far know this virus. These include darunavir/cobicistat, oseltamivir, immunoglobulins, arbidol (an antiviral used in Russia and China vs influenza), angiotensin receptor blockers, stem cell therapy, convalescent plasma, and traditional Chinese medicine.

Remember corticosteroids are currently not recommended in the absence of other indications for their use (see related PEARL).

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. US National Library of Medicine. https://clinicaltrials.gov/ct2/results?cond=2019nCoV&term=&cntry=&state=&city=&dist
  2. Li Guangdi, De Clercq E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nature Reviews Drug Discovery 2020; Feb 19, 2010. https://www.nature.com/articles/d41573-020-00016-0
  3. Harrison C. Coronavirus puts drug repurposing on the fast track. Nature Biotechnology 020, Feb 27. https://www.nature.com/articles/d41587-020-00003-1
  4. Velavan TP, Meyer CG. The COVID-19 epidemic. Tropical Medicine and International Health 2020;25:278-280. https://onlinelibrary.wiley.com/doi/full/10.1111/tmi.13383
  5. Elfiky AA. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sciences 2020;248. 11747. https://www.sciencedirect.com/science/article/pii/S0024320520302253
  6. Wang Y, Wang Y, Chen Y, et al. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J Med Virol 2020;March 5. https://www.ncbi.nlm.nih.gov/pubmed/32134116
  7. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2029 novel coronavirus in Wuhan, China. Lancet 2020;395:497-506. https://www.ncbi.nlm.nih.gov/pubmed/31986264
  8. Paules CI, Marston HD, Fauci AS. Coronavirus infections—More than just the common cold. JAMA 2020;323:707-78. https://jamanetwork.com/journals/jama/fullarticle/2759815
  9. Touret F, de Lamballerie X. Of chloroquine and COVID-19. Antiviral Research 2020;177. 104762. https://www.sciencedirect.com/science/article/pii/S0166354220301145
  10. Gurwitz D. Angiotensin receptor blockers as tentavie SARS-CoV-2 therapeutics. https://www.ncbi.nlm.nih.gov/pubmed/32129518/
  11. Wang M, Cao R, Zhang L, et al. Remdesivir and chlorquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research 2020;30:269-71. https://www.nature.com/articles/s41422-020-0282-0
  12. Roques P, Thiberville SD, Dupuis-Maguirara L, et al. Paradoxical effect of chloroquine treatment in enhancing Chikungunya virus infection. Viruses 2018;10, 268. https://www.ncbi.nlm.nih.gov/pubmed/29772762
  13. Young BE, Ong SWX, Kalimuddin S, et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA 2020;March 3. https://jamanetwork.com/journals/jama/fullarticle/2762688
  14. Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020; March 5. https://www.nejm.org/doi/full/10.1056/NEJMoa2001191
  15. Yao X, Ye F, Zhang M, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 2020. March 9. https://www.ncbi.nlm.nih.gov/pubmed?term=32150618
  16. Cao B, Wang Y, Wen D, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl M Med 2020, March18. DOI:10.1056/NEJMoa2001282. https://www.nejm.org/doi/full/10.1056/NEJMoa2001282

 

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

What existing drugs are currently being evaluated or repurposed for treatment of Coronavirus (Covid-19) infection?

What’s the evidence that respiratory viruses, including Covid-19, can be transmitted by touching contaminated surfaces?

Although no published data specific to Covid-19 is yet available, transmission by contact with contaminated surfaces has been implicated in infections due to several respiratory viruses, such as other human coronaviruses and influenza viruses. 1,2

A 2020 review article involving 22 published studies found that human coronaviruses such as SARS, MERS or common cold coronaviruses (eg, HCoV-229E) can persist on inanimate surfaces (eg, metal, glass or plastic) for hours up to 9 days depending on the level of initial viral contamination.1  

A recent NEJM study reported Covid-19 persisting  for 72 h on plastic and 48 h on stainless steel (3). Shorter survival was observed on cardboard (24 h or less) and copper surface (4 h or less). Although data on transmissibility of coronaviruses from contaminated surfaces to hands is not currently available, at least in the case of influenza A, a contact time of 5 seconds may transfer 31.6% of the viral load to the hands.4

But hand contamination doesn’t necessarily stop there.  We constantly touch our faces, including nose, eyes, and mouth, all serving as potential entry points for the virus.   One study found that, on average, subjects touched their faces 23 times per hour, with nearly one-half of that time involving either the nose, eyes or mouth. 5 Another study reported touching one’s face on average 19 times in a 2-hour period (range 0-105 times!).

For these reasons, environmental decontamination and hand hygiene have been stressed as part of the ongoing strategies to limit Covid-19 spread.

The good news is that coronaviruses are efficiently inactivated by many of the commonly available disinfectants and antiseptics, including 62%-71% ethanol, 70% isopropyl alcohol, 1:50 dilution of household bleach, and 0.5% hydrogen peroxide. 1

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. Kampf G, Todt D, Pfaender S, et al. Persistence of coronavirus on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect 2020;104:246-51. https://www.ncbi.nlm.nih.gov/pubmed/32035997
  2. Otter JA, Donskey C, Yezli S, et al. Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: the possible role of dry surface contamination. J Hosp Infect 2016;92:235-250. https://www.ncbi.nlm.nih.gov/pubmed/26597631/
  3.  van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med 2020, March 17. https://www.nejm.org/doi/10.1056/NEJMc2004973
  4. Bean B, Moore BM, Sterner B, et al. Survival of influenza viruses on environmental surfaces. J Infect Dis 1982;146:47-51. https://www.ncbi.nlm.nih.gov/pubmed/6282993
  5. Kwok YL, Garlton J, McLaws ML. Face touching: a frequent habit that has implications for hand hygiene. Am J Infect Control 2015;43:112-4. https://www.ncbi.nlm.nih.gov/pubmed/25637115
  6. Elder NC, Sawyer W, Pallerla H, et al. Hand hygiene and face touching in family medicine offices: a Cincinnati Area Research and Improvement group (CARInG) Network Study. J Am Board Fam Med 2014;27:339-346. https://www.jabfm.org/content/27/3/339.long
What’s the evidence that respiratory viruses, including Covid-19, can be transmitted by touching contaminated surfaces?

Catch these selected key clinical pearls on coronavirus disease (Covid-19)!

Although the Covid-19 pandemic is continuing to evolve and our knowledge of its epidemiology and pathophysiology is still far from complete, you may find the following pearls based on published literature to date useful when discussing this disease with your colleagues or the public. 1-11

  • Age group: Primarily an adult disease. Children (< 15-year-old) account for only a minority of symptomatic patients (<1%); ~50% of patients are between 15-49 years of age with 15% in the ≥ 65 year group. 1
  • Incubation period: A bit longer than seasonal flu. Median 4.0 days (IQR 2.0-7.0 days); an upper range up to 24 days has also been reported. In contrast, for seasonal flu the median incubation period is shorter (median 2.0 days, 1.0-7.0 days. 1,4,11
  • Transmission: Contact, droplet, and possibly airborne. On average each person may transmit Covid-19 virus to 2-3 other persons (vs <2 people for seasonal flu). Unlike SARS or MERS, but more akin to the seasonal flu, asymptomatic persons may also be able to transmit the disease. 4,5,11
  • Comorbid conditions (eg, diabetes, hypertension, COPD…): Present in about 1/3 of reported patients. 1
  • Symptoms 1,5
    • ~80% of patients may be either asymptomatic or have mild disease
    • Fever may be absent in ~50% of patients on presentation but will eventually develop in ~90% of hospitalized patients
    • Cough (2/3 dry) is present in majority (~80%) of cases
    • Rhinorrhea is uncommon (<10%), in contrast to the seasonal influenza
    • GI symptoms (nausea/vomiting/diarrhea) are uncommon by some reports(<10%), but not by others (>30.0%). 12
    • May take 9-12 days from onset of symptoms to severe disease
  • Labs 1
    • Lymphopenia is common (up to ~80%)
    • Abnormal liver function (AST and ALT) is found in about 1/3 of patients
    • C-reactive protein (CRP) is usually elevated (~80% of severe cases)
    • Procalcitonin is usually normal
  • Treatment: Supportive for now. Candidate drugs include remdesivir, lopinavir/ritonavir, chloroquine phosphate, ribavirin and several others.4
  • Mortality: Reported mortality among mostly symptomatic hospitalized cases is ~2.0% (0.9% without comorbidities, 5-10% in those with comorbidities, 50% among critically ill). Overall mortality rates will likely drop as more patients without symptoms or with mild disease are tested. In contrast, 2 other coronavirus diseases, SARS and MERS, have mortality rates of ~9.0% and 36.0%, respectively. 1,4,5

 

Bonus pearl: Did you know that, Covid-19-infected patients shed the virus in their nasopharyngeal secretions on the average for 12 days, some as long as 24 days?3

 

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. Guan W, Ni Z, Hu Y, et al. Clinical characteristics of Coronavirus disease 2019 in China. N Engl J Med 2020. First published Feb 28, 220, last updated March 6, 2020. https://www.nejm.org/doi/10.1056/NEJMoa2002032
  2. Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel Coronavirus in the United States. N Engl J Med 2020; 382:929-36. https://www.nejm.org/doi/full/10.1056/NEJMoa2001191
  3. Young BE, Ong SWX, Kalimuddin S, et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA. Doi:10.1001/jama.2020.3204. Published online March 3, 2020. https://jamanetwork.com/journals/jama/fullarticle/2762688
  4. Wang Y, Wang Y, Chen Y, et al. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J Med Virol 2020. Doi: 10.1002/jmv.25748. https://www.ncbi.nlm.nih.gov/pubmed/32134116
  5. Fauci AS, Lane HC, Redfield RR. Covid-19—Navigating the uncharted. N Eng J Med 2020. DOI:10.1056/NEJMe2002387. https://www.nejm.org/doi/full/10.1056/NEJMe2002387
  6. Del Rio C, Malani PN. 2019 novel coronavirus—important information for clinicians. JAMA 2020, Feb 5. https://www.ncbi.nlm.nih.gov/pubmed/32022836
  7. Lipsitch M, Swerdlow DL, Finelli L. Defining the epidemiology of Covid-19—studies needed. N Engl J Med 2020. Feb 19. DOI:10.1056/NEJMp2002125. https://www.ncbi.nlm.nih.gov/pubmed/32074416/
  8. Morens DM, Daszak P, Taubenberger JK. Escaping Pandora’s box—another novel coronavirus. N Eng J Med 2020. Feb 26. DOI:10.1056/NEJMp2002106. https://www.nejm.org/doi/full/10.1056/NEJMp2002106
  9. She J, Jiang J, Ye L, et al. 2019 novel coronavirus of pneumonia in Wuhan, China: merging attack and management strategies. Clin Trans Med 2020;9:19. https://clintransmed.springeropen.com/articles/10.1186/s40169-020-00271-z
  10. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395: 497-506. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)30183-5/fulltext
  11. Bai Y, Yao L, Wei T, et al. Presumed asymptomatic carrier transmission of COVID-19. JAMA 2020. Feb 21. https://jamanetwork.com/journals/jama/fullarticle/2762028
  12. Pan L, Mu M, Yang P, et al. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: a descriptive, cross-sectional, multicenter study. Am j Gastroenterol 2020. https://journals.lww.com/ajg/Documents/COVID_Digestive_Symptoms_AJG_Preproof.pdf
Catch these selected key clinical pearls on coronavirus disease (Covid-19)!