How can people with a respiratory virus such as Covid-19 be contagious even when they don’t cough or sneeze?

Couple of factors likely play a role in the transmission of respiratory viruses such as Covid-19 even in the absence of respiratory symptoms: 1. Generation of small droplets through everyday activities such as talking and breathing; 2. Presence of infectious virus in the respiratory tract before onset of symptoms.1-4

Small droplet generation during every day activity: Normal human speech and breathing can yield small particles or droplets that are too small to see by naked eye but are perfectly capable of serving as vehicles for aerial transport (more like hot air balloons than 737’s!) of a variety of communicable respiratory pathogens. 1  These small particles are believed to originate from the mucosal layers coating the respiratory tract as well as from vocal cord adduction and vibration within the larynx.1

In some cool experiments involving normal volunteers,1 the rate of particle emission during normal human speech positively correlated with the loudness of voice, ranging from 1-50 particles/second, irrespective of the language spoken (English, Spanish, Mandarin, or Arabic).  Perhaps, equally intriguing was identification of “speech superemitters”, consistently releasing an order of magnitude more particles than other participants.

Simply counting out loud has been associated with around 2-10 times as many total particles emitted as a single cough, 2 and the percentage of airborne droplet nuclei generated by singing is several times more than that emitted during normal talking and more like that of coughing! 3 Given, these observations, perhaps, the unfortunate outbreak of Covid-19 among members of a church choir in state of Washington 5 is not totally unexpected.

Presence of infectious virus in persons without symptoms:  An estimated 18% to 75% of patients testing positive for Covid-19 have no symptoms. This of course means that irrespective of whether symptoms ever develop, persons with Covid-19 may serve as a source of infection, by just breathing, talking, or singing when around susceptible people.

For these reasons, social distancing and wearing of masks during a pandemic makes sense!

Bonus Pearl: Did you know that infectious viral particles can be recovered from 40% of breath samples of patients with influenza? 6

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 References

  1. Asadi S, Wexler AS, Cappa CD, et al. Aerosol emission and superemission during human speech increase with voice loudness. Scientific Reports 2019;9:2348. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6382806/
  2. Loudon RG, Roberts RM. Droplet expulsion from the respiratory tract. Am Rev Resp Dis 1967;435-42. https://doi.org/10.1164/arrd.1967.95.3.435
  3. Loudon RG, Roberts MR. Singing and the dissemination of tuberculosis. Am Rev Resp Dis 1968;98:297-300. DOI: 10.1164/arrd.1968.98.2.297 https://www.atsjournals.org/doi/abs/10.1164/arrd.1968.98.2.297?journalCode=arrd
  4. Lai KM, Bottomley C, McNerney. Propagation of respiratory aerosols by the Vuvuzela. PLoS One 2011;6:e20086. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3100331/
  5. Read R. A choir decided to go ahead with rehearsal. Now dozens of members have COVID-19 and two are dead. Los Angeles Times March 29, 2020. https://www.latimes.com/world-nation/story/2020-03-29/coronavirus-choir-outbreak
  6. Yan J, Grantham M, Pantelic J, et al. Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a college community. PNAS 2018;115:1081-1086 https://www.pnas.org/content/115/5/1081

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

How can people with a respiratory virus such as Covid-19 be contagious even when they don’t cough or sneeze?

Why might convalescent sera or plasma transfusion therapy be effective in the treatment of patients with Covid-19?

Of the myriad therapeutic approaches currently under consideration in our fight against Covid-19, convalescent sera/plasma therapy (CSPT) is particularly promising. The principle behind CSPT is to provide immediate immunity to susceptible people by administering the serum or plasma—therefore antibodies—of individuals who have successfully recovered from Covid-19.1

The theory behind using antibody-containing blood products to treat infections is by no means new and goes back to the 1890s when serum from exposed animals who recovered from disease was used to protect healthy animals against tetanus and diphtheria.2

Historically, CSPT has been used against poliomyelitis, measles, mumps, and influenza, and more recently in a smaller number of patients with SARS, H5N1 and H7N9 avian influenza and Ebola.1,3-8 A 2015 systematic review and exploratory meta-analysis of 32 studies involving severe acute respiratory infections of viral etiology (including influenza and SARS) found a reduction in mortality (odds ratio, 0.25, 95% C.I. 0.14-0.45), particularly when CSPT was administered early into the illness.3

Experience with 1918 Spanish influenza pandemic: A meta-analysis of 1703 hospitalized patients (Yes, scientists performed wonderful studies back then too despite a pandemic!) during the 1918 Spanish influenza pandemic demonstrated decreased mortality with administration of convalescent blood products with crude case-fatality rates dropping by one-half (16% vs 37% in controls)! Notably, patients who were treated within 4 days of pneumonia had one-third the case-fatality rate compared to those treated later.3

Experience with 2002-2004 SARS epidemic: A retrospective study from Hong Kong involving 80 patients with SARS (caused by another coronavirus, SARS-CoV-1) not responding to antibiotics/steroids/interferon but receiving CSPT reported a lower mortality rate with near significant (P=0.08) improvement in outcome and reduced mortality in the group that received CSPT before day 14 of the illness (6.3% vs 21.9%).4

What about Covid-19? A very preliminary report out of China involving 5 mechanically-ventilated patients with ARDS and rapid progression despite corticosteroids and antivirals found clinical improvement in all 5 patients. More specifically, body temperature normalized within 3 days in 4 of 5 patients and ARDS resolved in 4 patients at 12 days following transfusion, 2 patients were in stable condition and 3 patients were eventually discharged from the hospital.9

Of course, we should be mindful of potential adverse reactions due to CSP as well, such as allergic reactions, infections, transfusion-related acute lung injury (TRALI), and theoretical risk of antibody-dependent enhancement of infection (ADE).1 Only properly designed clinical studies can shed light on the safety and efficacy of CSPT in Covid-19.

Nevertheless, the historical data on the use of CSPT in serious viral infections is encouraging. In fact, the first US studies of CSPT in Covid-19 have already been approved by the FDA!10 Stay tuned!

Bonus pearl: Did you know that serum and plasma both refer to the noncellular fluid part of blood, but serum is collected after coagulation factors (fibrinogen) have been removed. Fortunately, both contain antibodies!

 

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Contributed by Bruce Tiu, Harvard Medical Student, Boston, MA.

References:

  1. Casadevall A, Pirofski L. The convalescent sera for containing COVID-19. J Clin Invest. 2020;130(4):1545-1548. doi: 10.1172/JCI138003 https://www.jci.org/articles/view/138003
  2. Eibl MM. History of immunoglobulin replacement. Immunol Allergy Clin North Am. 2008;28(4):737–viii. doi:10.1016/j.iac.2008.06.004 https://www.sciencedirect.com/science/article/abs/pii/S0889856108000702
  3. Mair-Jenkins J, Saavedra-Campos M, Baillie K, et al. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: A systematic review and exploratory meta-analysis. J Infect Dis 2015; 211: 80-90. https://academic.oup.com/jid/article/211/1/80/799341
  4. Luke TC, Kilbane EM, Jackson JL, et al. Meta-Analysis: Convalescent Blood Products for Spanish Influenza Pneumonia: A Future H5N1 Treatment?. Ann Intern Med. 2006;145:599–609. doi: 10.7326/0003-4819-145-8-200610170-00139 https://annals.org/aim/article-abstract/729754/meta-analysis-convalescent-blood-products-spanish-influenza-pneumonia-future-h5n1
  5. Cheng Y, Wong R, Soo YO, et al. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis. 2005;24(1):44–46. doi:10.1007/s10096-004-1271-9 https://link.springer.com/article/10.1007/s10096-004-1271-9
  6. Zhou B, Zhong N, Guan Y. Treatment with convalescent plasma for influenza A (H5N1) infection. N Engl J Med. 2007;357:1450–1. doi: 10.1056/NEJMc070359 https://www.nejm.org/doi/full/10.1056/NEJMc070359
  7. Chen L, Xiong J, Bao L, et al. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis 2020;20: 398-400. https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(20)30141-9/fulltext
  8. Wu XX, Gao HN, Wu HB, Peng XM, Ou HL, Li LJ. Successful treatment of avian-origin influenza A (H7N9) infection using convalescent plasma. Int J Infect Dis. 2015;41:3–5. doi: 10.1016/j.ijid.2015.10.009 https://www.ncbi.nlm.nih.gov/pubmed/26482389
  9. Shen C, Wang Z, Zhao F, et al. Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma. JAMA. Published online March 27, 2020. doi:10.1001/jama.2020.4783 https://jamanetwork.com/journals/jama/fullarticle/2763983
  10. https://thehill.com/regulation/healthcare/490768-first-us-coronavirus-patients-being-treated-with-plasma-therapy.

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

 

 

 

 

Why might convalescent sera or plasma transfusion therapy be effective in the treatment of patients with Covid-19?

5 Covid-19 facts worth keeping in mind as we deal with our pandemic anxiety

As an infectious disease physician who had the privilege of caring for many patients during the unsettling times of the early HIV epidemic and the more recent H1N1 pandemic influenza, I fully understand the widespread anxiety the current Covid-19 pandemic has inflicted on our society.

Here are 5 scientific facts that may be worth remembering as we try to deal with our pandemic anxiety.

 
1. On transmission in the community: For sure, Covid-19 is transmitted in the community but I am glad that it behaves more like influenza which is primarily contracted through close personal contact and droplets, and less like measles or chickenpox which are considered airborne with viral particles travelling lingering in the air for long periods of time. On average, a patient with Covid-19 may infect 2-3 susceptible contacts vs as many as 12 or more in the case of patients with measles or chickenpox (1, 2).

 
2. On transmission in healthcare settings: For sure, Covid-19 can be transmitted in the healthcare settings, just like other coronaviruses, such severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS) coronaviruses. But the good news is that, in the absence of aerosol-producing procedures (eg, intubation, nebulizer therapy) it doesn’t seem to behave like an airborne virus (see above) and adherence to droplet and contact precautions, including donning of masks, gowns, eye protection and hand hygiene has been effective (3, 4).

 
3. On surface viability after cleaning/disinfection: For sure, the novel 2019 coronavirus SARS-CoV-2, the cause of Covid-19, can be found on surfaces outside of the body. But the good news is that, in contrast to hardy viruses such as norovirus, it succumbs to common disinfection and environmental cleaning procedures. That’s because  coronaviruses have a lipid envelope that easily falls apart under usual cleaning and disinfection of surfaces. That means that simple handwashing with soap and water (minimum 20 seconds), alcohol containing hand hygiene products, detergents and diluted bleach should easily inactivate it (5-9) and that’s good!

 
4. On the course of Covid-19: For sure, Covid-19 can make people very sick and, tragically, may be fatal on occasion. But compared to diseases caused by other recent respiratory coronaviruses such as MERS or SARS, the overall mortality associated with Covid-19 is much lower (often ~ 2.0-3.0% or lower vs 36.0% for MERS and ~10.0% for SARS) (1). In fact, the majority of patients (~80%) may have no symptoms or only have mild disease (10). I am thankful that we are not dealing with a transmissible respiratory virus that has mortality rates like that of MERS.

 
5. On the timing of this pandemic: We are fortunate that this is 2020 not 1918-19 when a particularly virulent form of influenza, dubbed as “the mother of all pandemics” infected some 500 million people (a third of the world’s population at the time) and accounted for an estimated 50 million deaths (11). Imagine fighting a pandemic without the technology to identify its cause. Imagine fighting a pandemic without access to the miracles of modern science and medicine, including antibiotics for secondary bacterial pneumonia, artificial ventilation, dialysis, ICU support, and capability to screen for an infectious agent.  Imagine fighting a pandemic without scientific tools to develop effective antimicrobials or vaccines. Imagine fighting a pandemic without the luxury of the internet.

 
As unprepared as we all feel in combatting Covid-19, I take solace in the fact that our armamentarium and collective determination to mount an effective response to this pandemic has never been better. Even during these uncertain times, I reflect on what could have been and remain optimistic. Be safe!

 

 

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.


References:
1. Fauci AS, Lane HC, Redfield RR. Covid-19—Navigating the uncharted. N Eng J Med 2020. DOI:10.1056/NEJMe2002387. https://www.nejm.org/doi/full/10.1056/NEJMe2002387
2. Delamater PL, Street EJ, Leslie TF, et al. Complexity of the basic reproduction number (R0). Emerg infect Dis 2019;25:1-4. https://wwwnc.cdc.gov/eid/article/25/1/17-1901_article
3. Seto WH, Tsang D, Yung RWH, et al. Effectiveness of precautions against droplets and contact in prevention of nosocomial transmission of severe acute respiratory syndrome (SARS). Lancet 2003;361:1519-20. https://www.sciencedirect.com/science/article/pii/S0140673603131686
4. Ng K, Poon BH, Puar THK, et al. COVID-19 and the risk to health care workers: a case report. Ann Intern Med. 2020, March 16. https://annals.org/aim/fullarticle/2763329/covid-19-risk-health-care-workers-case-report
5. van Doremalen N, Bushmaker, Morris DH, et al. Aerosol and surface stability of HCoV-19 (SARS-CoV-2) compared to SARS-CoV-1. N Engl J Med 2020. https://doi.org/10.1101/2020.03.09.20033217
6. Kampf G. Efficacy of ethanol against viruses in hand disinfection. J Hosp Infect 2018;98:331-38. https://www.sciencedirect.com/science/article/pii/S0195670117304693
7. Grayson ML, Melvani S, Druce J, et al. Efficacy of soap and water and alcohol-based hand-rub preparations against live H1N1 influenza virus on the hands of human volunteers Clin Infect Dis 2009;48:285-91. https://www.ncbi.nlm.nih.gov/pubmed/19115974/
8. Service RF. Does disinfecting surfaces really prevent the spread of coronavirus? Science 2020, March 12. https://www.sciencemag.org/news/2020/03/does-disinfecting-surfaces-really-prevent-spread-coronavirus
9. CDC. Norovirus. https://www.cdc.gov/vitalsigns/norovirus/index.html
10. Guan W, Ni Z, Hu Y, et al. Clinical characteristics of Coronavirus disease 2019 in China. N Engl J Med 2020. First published Feb 28, 220, last updated March 6, 2020. https://www.nejm.org/doi/10.1056/NEJMoa2002032
11. Taubenberger JK, Morens DM. 1918 influenza: the mother of all pandemics. Emerg Infect Dis 2006;12:15-22. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3291398/

 

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

 

 

5 Covid-19 facts worth keeping in mind as we deal with our pandemic anxiety

Catch these selected key clinical pearls on coronavirus disease (Covid-19)!

Although the Covid-19 pandemic is continuing to evolve and our knowledge of its epidemiology and pathophysiology is still far from complete, you may find the following pearls based on published literature to date useful when discussing this disease with your colleagues or the public. 1-11

  • Age group: Primarily an adult disease. Children (< 15-year-old) account for only a minority of symptomatic patients (<1%); ~50% of patients are between 15-49 years of age with 15% in the ≥ 65 year group. 1
  • Incubation period: A bit longer than seasonal flu. Median 4.0 days (IQR 2.0-7.0 days); an upper range up to 24 days has also been reported. In contrast, for seasonal flu the median incubation period is shorter (median 2.0 days, 1.0-7.0 days. 1,4,11
  • Transmission: Contact, droplet, and possibly airborne. On average each person may transmit Covid-19 virus to 2-3 other persons (vs <2 people for seasonal flu). Unlike SARS or MERS, but more akin to the seasonal flu, asymptomatic persons may also be able to transmit the disease. 4,5,11
  • Comorbid conditions (eg, diabetes, hypertension, COPD…): Present in about 1/3 of reported patients. 1
  • Symptoms 1,5
    • ~80% of patients may be either asymptomatic or have mild disease
    • Fever may be absent in ~50% of patients on presentation but will eventually develop in ~90% of hospitalized patients
    • Cough (2/3 dry) is present in majority (~80%) of cases
    • Rhinorrhea is uncommon (<10%), in contrast to the seasonal influenza
    • GI symptoms (nausea/vomiting/diarrhea) are uncommon by some reports(<10%), but not by others (>30.0%). 12
    • May take 9-12 days from onset of symptoms to severe disease
  • Labs 1
    • Lymphopenia is common (up to ~80%)
    • Abnormal liver function (AST and ALT) is found in about 1/3 of patients
    • C-reactive protein (CRP) is usually elevated (~80% of severe cases)
    • Procalcitonin is usually normal
  • Treatment: Supportive for now. Candidate drugs include remdesivir, lopinavir/ritonavir, chloroquine phosphate, ribavirin and several others.4
  • Mortality: Reported mortality among mostly symptomatic hospitalized cases is ~2.0% (0.9% without comorbidities, 5-10% in those with comorbidities, 50% among critically ill). Overall mortality rates will likely drop as more patients without symptoms or with mild disease are tested. In contrast, 2 other coronavirus diseases, SARS and MERS, have mortality rates of ~9.0% and 36.0%, respectively. 1,4,5

 

Bonus pearl: Did you know that, Covid-19-infected patients shed the virus in their nasopharyngeal secretions on the average for 12 days, some as long as 24 days?3

 

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. Guan W, Ni Z, Hu Y, et al. Clinical characteristics of Coronavirus disease 2019 in China. N Engl J Med 2020. First published Feb 28, 220, last updated March 6, 2020. https://www.nejm.org/doi/10.1056/NEJMoa2002032
  2. Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel Coronavirus in the United States. N Engl J Med 2020; 382:929-36. https://www.nejm.org/doi/full/10.1056/NEJMoa2001191
  3. Young BE, Ong SWX, Kalimuddin S, et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA. Doi:10.1001/jama.2020.3204. Published online March 3, 2020. https://jamanetwork.com/journals/jama/fullarticle/2762688
  4. Wang Y, Wang Y, Chen Y, et al. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J Med Virol 2020. Doi: 10.1002/jmv.25748. https://www.ncbi.nlm.nih.gov/pubmed/32134116
  5. Fauci AS, Lane HC, Redfield RR. Covid-19—Navigating the uncharted. N Eng J Med 2020. DOI:10.1056/NEJMe2002387. https://www.nejm.org/doi/full/10.1056/NEJMe2002387
  6. Del Rio C, Malani PN. 2019 novel coronavirus—important information for clinicians. JAMA 2020, Feb 5. https://www.ncbi.nlm.nih.gov/pubmed/32022836
  7. Lipsitch M, Swerdlow DL, Finelli L. Defining the epidemiology of Covid-19—studies needed. N Engl J Med 2020. Feb 19. DOI:10.1056/NEJMp2002125. https://www.ncbi.nlm.nih.gov/pubmed/32074416/
  8. Morens DM, Daszak P, Taubenberger JK. Escaping Pandora’s box—another novel coronavirus. N Eng J Med 2020. Feb 26. DOI:10.1056/NEJMp2002106. https://www.nejm.org/doi/full/10.1056/NEJMp2002106
  9. She J, Jiang J, Ye L, et al. 2019 novel coronavirus of pneumonia in Wuhan, China: merging attack and management strategies. Clin Trans Med 2020;9:19. https://clintransmed.springeropen.com/articles/10.1186/s40169-020-00271-z
  10. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395: 497-506. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)30183-5/fulltext
  11. Bai Y, Yao L, Wei T, et al. Presumed asymptomatic carrier transmission of COVID-19. JAMA 2020. Feb 21. https://jamanetwork.com/journals/jama/fullarticle/2762028
  12. Pan L, Mu M, Yang P, et al. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: a descriptive, cross-sectional, multicenter study. Am j Gastroenterol 2020. https://journals.lww.com/ajg/Documents/COVID_Digestive_Symptoms_AJG_Preproof.pdf
Catch these selected key clinical pearls on coronavirus disease (Covid-19)!