Why might convalescent sera or plasma transfusion therapy be effective in the treatment of patients with Covid-19?

Of the myriad therapeutic approaches currently under consideration in our fight against Covid-19, convalescent sera/plasma therapy (CSPT) is particularly promising. The principle behind CSPT is to provide immediate immunity to susceptible people by administering the serum or plasma—therefore antibodies—of individuals who have successfully recovered from Covid-19.1

The theory behind using antibody-containing blood products to treat infections is by no means new and goes back to the 1890s when serum from exposed animals who recovered from disease was used to protect healthy animals against tetanus and diphtheria.2

Historically, CSPT has been used against poliomyelitis, measles, mumps, and influenza, and more recently in a smaller number of patients with SARS, H5N1 and H7N9 avian influenza and Ebola.1,3-8 A 2015 systematic review and exploratory meta-analysis of 32 studies involving severe acute respiratory infections of viral etiology (including influenza and SARS) found a reduction in mortality (odds ratio, 0.25, 95% C.I. 0.14-0.45), particularly when CSPT was administered early into the illness.3

Experience with 1918 Spanish influenza pandemic: A meta-analysis of 1703 hospitalized patients (Yes, scientists performed wonderful studies back then too despite a pandemic!) during the 1918 Spanish influenza pandemic demonstrated decreased mortality with administration of convalescent blood products with crude case-fatality rates dropping by one-half (16% vs 37% in controls)! Notably, patients who were treated within 4 days of pneumonia had one-third the case-fatality rate compared to those treated later.3

Experience with 2002-2004 SARS epidemic: A retrospective study from Hong Kong involving 80 patients with SARS (caused by another coronavirus, SARS-CoV-1) not responding to antibiotics/steroids/interferon but receiving CSPT reported a lower mortality rate with near significant (P=0.08) improvement in outcome and reduced mortality in the group that received CSPT before day 14 of the illness (6.3% vs 21.9%).4

What about Covid-19? A very preliminary report out of China involving 5 mechanically-ventilated patients with ARDS and rapid progression despite corticosteroids and antivirals found clinical improvement in all 5 patients. More specifically, body temperature normalized within 3 days in 4 of 5 patients and ARDS resolved in 4 patients at 12 days following transfusion, 2 patients were in stable condition and 3 patients were eventually discharged from the hospital.9

Of course, we should be mindful of potential adverse reactions due to CSP as well, such as allergic reactions, infections, transfusion-related acute lung injury (TRALI), and theoretical risk of antibody-dependent enhancement of infection (ADE).1 Only properly designed clinical studies can shed light on the safety and efficacy of CSPT in Covid-19.

Nevertheless, the historical data on the use of CSPT in serious viral infections is encouraging. In fact, the first US studies of CSPT in Covid-19 have already been approved by the FDA!10 Stay tuned!

Bonus pearl: Did you know that serum and plasma both refer to the noncellular fluid part of blood, but serum is collected after coagulation factors (fibrinogen) have been removed. Fortunately, both contain antibodies!


Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Contributed by Bruce Tiu, Harvard Medical Student, Boston, MA.


  1. Casadevall A, Pirofski L. The convalescent sera for containing COVID-19. J Clin Invest. 2020;130(4):1545-1548. doi: 10.1172/JCI138003 https://www.jci.org/articles/view/138003
  2. Eibl MM. History of immunoglobulin replacement. Immunol Allergy Clin North Am. 2008;28(4):737–viii. doi:10.1016/j.iac.2008.06.004 https://www.sciencedirect.com/science/article/abs/pii/S0889856108000702
  3. Mair-Jenkins J, Saavedra-Campos M, Baillie K, et al. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: A systematic review and exploratory meta-analysis. J Infect Dis 2015; 211: 80-90. https://academic.oup.com/jid/article/211/1/80/799341
  4. Luke TC, Kilbane EM, Jackson JL, et al. Meta-Analysis: Convalescent Blood Products for Spanish Influenza Pneumonia: A Future H5N1 Treatment?. Ann Intern Med. 2006;145:599–609. doi: 10.7326/0003-4819-145-8-200610170-00139 https://annals.org/aim/article-abstract/729754/meta-analysis-convalescent-blood-products-spanish-influenza-pneumonia-future-h5n1
  5. Cheng Y, Wong R, Soo YO, et al. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis. 2005;24(1):44–46. doi:10.1007/s10096-004-1271-9 https://link.springer.com/article/10.1007/s10096-004-1271-9
  6. Zhou B, Zhong N, Guan Y. Treatment with convalescent plasma for influenza A (H5N1) infection. N Engl J Med. 2007;357:1450–1. doi: 10.1056/NEJMc070359 https://www.nejm.org/doi/full/10.1056/NEJMc070359
  7. Chen L, Xiong J, Bao L, et al. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis 2020;20: 398-400. https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(20)30141-9/fulltext
  8. Wu XX, Gao HN, Wu HB, Peng XM, Ou HL, Li LJ. Successful treatment of avian-origin influenza A (H7N9) infection using convalescent plasma. Int J Infect Dis. 2015;41:3–5. doi: 10.1016/j.ijid.2015.10.009 https://www.ncbi.nlm.nih.gov/pubmed/26482389
  9. Shen C, Wang Z, Zhao F, et al. Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma. JAMA. Published online March 27, 2020. doi:10.1001/jama.2020.4783 https://jamanetwork.com/journals/jama/fullarticle/2763983
  10. https://thehill.com/regulation/healthcare/490768-first-us-coronavirus-patients-being-treated-with-plasma-therapy.

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!





Why might convalescent sera or plasma transfusion therapy be effective in the treatment of patients with Covid-19?

Should I order a blood transfusion based on the hemoglobin (Hgb) or the hematocrit (Hct)?

Despite the frequent interchangeability of Hgb (g/dL) and Hct (%) by a ratio of ~1:3, directly-measured blood Hgb levels may be preferred for assessing the need for blood transfusion for at least 3 reasons:

First, in contrast to the widely-used automated measurements of Hct, Hgb is not affected by conditions that affect the size of the RBCs or the mean corpuscular Hgb concentration (MCHC). This is because the Hct is not a direct measure of Hgb; rather it’s the proportion of blood occupied by RBCs which, in automated systems, is derived by multiplying the number of RBCs by the mean corpuscular volume (MCV).1-3

This may not be a significant issue when MCHC is normal, but when MCHC is abnormal, HCT may not accurately reflect the blood Hgb concentration. For example, in patients with hypochromic iron deficiency anemia with RBCs containing less hemoglobin (ie, low MCHC), the Hct may overestimate blood Hgb levels. Conversely in hereditary spherocytosis with its attendant low RBC volume and high MCHC, the Hct may underestimate Hgb levels.

Second, Hct results may also be more subject to technical factors in the lab. For example, blood at room temperature between 6-24 h may be associated with RBC swelling and increased Hct without any change in its Hgb concentration.4

Finally, national and international guidelines on blood transfusion generally target Hgb, not Hct results.5-7

For a related pearl, go to https://pearls4peers.com/2016/11/01/should-i-use-a-hemoglobin-level-of-7-or-8-gdl-as-a-threshold-for-blood-transfusion-in-my-hospitalized-patient.



  1. Tefferi A, Hanson CA, Inwards DJ. How to interpret and pursue an abnormal complete blood cell count in adults. Mayo Clin Proc 2005;80:923-36. https://www.ncbi.nlm.nih.gov/pubmed/16007898
  2. Macdougall IC, Ritz E. The Normal Haematocrit Trial in dialysis patients with cardiac disease: are we any the less confused about target hemoglobin? Nephrol Dial Transplant 1998;13:3030-33. https://academic.oup.com/ndt/article-pdf/13/12/3030/9907456/3030.pdf
  3. Kelleher BP, Wall C, O’Broin SD. Haemoglobin, not haematocrit, should be the preferred parameter. Nephrol Dial Transplant 2001;16:1085-87. https://www.ncbi.nlm.nih.gov/pubmed/11328933
  4. Hayuanta HH. Can hemoglobin-hematocrit relationship be used to assess hydration status? CDK-237/vol 43 no.2, th. 2016 http://www.kalbemed.com/Portals/6/20_237Opini-Can%20Hemoglobin-Hematocrit%20Relationship%20Be%20Used%20to%20Assess%20Hydration%20Status.pdf
  5. Blood transfusion. NICE guideline, November, 2015. https://www.nice.org.uk/guidance/ng24/chapter/Recommendations#fresh-frozen-plasma-2 uk
  6. National Blood Authority: Australia. Patient blood management, November 2016. https://www.blood.gov.au/system/files/documents/nba-patient-blood-management-resource-guide-nov_2016_v3_sm_web_file.pdf
  7. Carson JL, Guyatt G, Heddle NM, et al. Clinical practice guidelines from the AAABB: red blood cell transfusion thresholds and storage. JAMA 2016; 316:2025-2035. https://www.ncbi.nlm.nih.gov/pubmed/27732721


If you like this pearl, don’t forget to sign up for future pearls delivered directly to your mailbox from “Oceans of Knowledge”!

Should I order a blood transfusion based on the hemoglobin (Hgb) or the hematocrit (Hct)?