How effective are the current Covid-19 vaccines in reducing the risk of asymptomatic infection?

Limited data suggest that not only are the mRNA Covid-19 vaccines effective in reducing the risk of symptomatic disease  by greater than 90% but also reducing the risk of asymptomatic infections by 80-90% after the second dose and by 62-80% after the 1st dose. 1-3

A CDC study of health care personnel, first responders, and other essential and frontline workers who received one of the 2 currently available mRNA vaccines (BNT162b2-Pfizer or mRNA-1273-Moderna) and underwent weekly testing for SARS-CoV-2 infection irrespective of symptoms found 90% efficacy in preventing infection among fully immunized (≥14 days after 2nd dose) and 80% efficacy in preventing infection among the partially immunized (≥14 days after 1st dose).  The majority of SARS-CoV-2 infections were identified by weekly specimens, with 11% remaining without symptoms.1

In a retrospective study of over 39,000 asymptomatic adult patients undergoing pre-procedural SARS-CoV-2 molecular screening tests, an 80% reduction in the risk of a positive test  was observed in those who had received 2 doses of an mRNA vaccine (majority Pfizer) and 72% reduction in those following a single dose of vaccine >10 days prior to their pre-procedure test.2  In the original Moderna trial , a 62% reduction in the risk of asymptomatic infection was seen among participants just before the second dose (ie, partially immunized).3 

Collectively, these reports support the high efficacy of mRNA vaccines in reducing the risk of SARS-CoV-2 in asymptomatic infection.  Whether these findings can be reproduced with other vaccine preparations is not known at this time!

Bonus Pearl: Did you know that according to 1 study, asymptomatic patients with SARS-CoV-2 infection may be more likely to be women, younger and have shorter duration of viral shedding? 4

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. Thompson MG, Burgess JL, Naleway AL, et al. Interim estimates of vaccine effectiveness of BNT162b2 and mRNA-1273 Covid-19 vaccines in preventing SARS-CoV-2 infection among health care personnel, first responders, and other essential and frontline workers—Eight U.S. locations, December 2020-March 2021. https://www.cdc.gov/mmwr/volumes/70/wr/mm7013e3.htm
  2. Tande AJ, Pollock BD, Shah ND, et al. Impact of the Covid-19 vaccine on asymptomatic infection among patients undergoing pre-procedural Covid-19 molecular screening. Clin Infect Dis 2021. https://pubmed.ncbi.nlm.nih.gov/33704435/
  3. Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 2021;384:403-16. https://www.nejm.org/doi/full/10.1056/nejmoa2035389
  4. Yang R, Gui X, Xiong Y. Comparison of clinical characteristics of patients with asymptomatic vs symptomatic coronavirus disease 2019 in Wuhan, China. JAMA Network Open 2020; May 27. https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2766237

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Mercy Hospital-St. Louis or its affiliate healthcare centers, Mass General Hospital, Harvard Medical School or its affiliated institutions. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

How effective are the current Covid-19 vaccines in reducing the risk of asymptomatic infection?

Should I treat asymptomatic blood pressure (BP) elevation in my hospitalized patient with well-controlled BP prior to admission?

In contrast to the management of acute symptomatic hypertension in the hospital, evidence-based guidelines on when to treat asymptomatic BP elevation (eg, >160/90 mm Hg without signs of end-organ injury) in patients without acute conditions (eg, acute myocardial infarction [MI] or acute ischemic stroke) are lacking. The literature suggests, however, that a more permissive approach is appropriate in many asymptomatic patients with elevated BPs while hospitalized, particularly in those with well-controlled BPs as outpatient (1-4). 

In a 2018 study involving > 14,000 older adults hospitalized for common non-cardiac conditions, 52% of the cohort with elevated BPs (majority ranging ~160-180 mm Hg) but well-controlled BPs at home were discharged on a more intensive antihypertensive regimen (1). Patients with history of MI or cerebrovascular disease were no more likely and those with limited life expectancy, dementia or metastatic cancer were no less likely to receive antihypertensive intensification which suggests the decision for more aggressive treatment of elevated BP was in large part driven by the BP readings themselves. 

More intensive anti-hypertensive therapy has not only been associated with lack of reduction in cardiac events or improvement in BP control following discharge but also with more adverse events, such as acute kidney injury, MI, falls, syncope and hypotension and increased risk of readmission (2-3). 

Another concern is the frequent use of IV antihypertensives with its attendant risk of overcorrection and adverse events. One study found that about one-third of patients with asymptomatic uncontrolled BP treated with IV antihypertensives had an excessive drop in BP of more than 25% within 6 hours (5).

Since many factors may contribute to transiently elevated inpatient BPs (eg,  acute pain, stress, anxiety, exposure to new drugs and white coat hypertension) (1), the best advice when dealing with an elevated BP in hospitalized patients may be to repeat the BP, gather data on home BPs, contextualize the findings based on likelihood of benefits and risks of more intensive therapy and discuss with the outpatient provider before discharging patients on more intensified anti-hypertensive therapy (4). 

Bonus Pearl: Did you know that nearly one-half of patients with well controlled BPs at home have hypertension during their hospitalization? (1)

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References
1. Anderson TS, Wray CM, Jing B, et al. Intensification of older adults’ outpatient blood pressure treatment at hospital discharge: national retrospective cohort study. BMJ 2018;362:k3503. https://www.bmj.com/content/362/bmj.k3503

2. Anderson TS, Jing B, Auerback A, et al. Clinical outcomes after intensifying antihypertensive medication regimens among older adults at hospital discharge. JAMA Intern Med 2019;170:1528-36. https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/2747871

3. Rastogi R, Sheehan MM, Hu B, et al. Treatment and outcomes of inpatient hypertension among adults with noncardiac admissions. JAMA Intern Med. Published online December 28, 2020. https://acphospitalist.org/archives/2021/01/tailor-treatment-for-asymptomatic-inpatient-hypertension.htm

4. Kearney-Strouse J. Tailor treatment for asymptomatic inpatient hypertension. ACP Hospitalist 2021; 15:22-23. https://acphospitalist.org/archives/2021/01/tailor-treatment-for-asymptomatic-inpatient-hypertension.htm

5. Lipari M, Moser LR, Petrovitch EA, et al. As-needed intravenous antihypertensive therapy and blood pressure control. J Hosp Med 2016;11:193-198. https://onlinelibrary.wiley.com/doi/abs/10.1002/jhm.2510

6. Jacobs ZG, Najafi N, Fang MC, et al. Reducing unnecessary treatment of asymptomatic elevated blood pressure with intravenous medications on the general internal medicine wards: a quality improvement initiative. J Hosp Med 2019;14:144-150. https://pubmed.ncbi.nlm.nih.gov/30811319/

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Mercy Hospital-St. Louis or its affiliate healthcare centers. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

 

 

 

Should I treat asymptomatic blood pressure (BP) elevation in my hospitalized patient with well-controlled BP prior to admission?

How might categorizing severity of illness help in the management of my patient with Covid-19?

Although the criteria for Covid-19 severity of illness categories may overlap at times or vary across guidelines and clinical trials, I have found those published in the National Institute of Health (USA) Covid-19 Treatment Guidelines most useful and uptodate.1  Keep in mind that the primary basis for severity categories in Covid-19 is the degree by which it alters pulmonary anatomy and physiology and respiratory function (see my table below).

The first question to ask when dealing with Covid-19 patients is whether they have any signs or symptoms that can be attributed to the disease (eg, fever, cough, sore throat, malaise, headache, muscle pain, lack of sense of smell). In the absence of any attributable symptoms, your patient falls into “Asymptomatic” or “Presymptomatic” category.  These patients should be monitored for any new signs or symptoms of Covid-19 and should not require additional laboratory testing or treatment.

If symptoms of Covid-19 are present (see above), the next question to ask is whether the patient has any shortness of breath or abnormal chest imaging. If neither is present, the illness can be classified as “Mild” with no specific laboratory tests or treatment indicated in otherwise healthy patients. These patients may be safely managed in ambulatory settings or at home through telemedicine or remote visits. Those with risk factors for severe disease (eg, older age, obesity, cancer, immunocompromised state), 2 however, should be closely monitored as rapid clinical deterioration may occur.

Once lower respiratory tract disease based on clinical assessment or imaging develops, the illness is no longer considered mild. This is a good time to check a spot 02 on room air and if it’s 94% or greater at sea level, the illness qualifies for “Moderate” severity. In addition to close monitoring for signs of progression, treatment for possible bacterial pneumonia or sepsis should be considered when suspected. Corticosteroids are not recommended here and there are insufficient data to recommend either for or against the use of remdesivir in patients with mild/moderate Covid-19.

Once spot 02 on room air drops below 94%, Covid-19 illness is considered “Severe”; other parameters include respiratory rate >30, Pa02/Fi02 < 300 mmHg or lung infiltrates >50%. Here, patients require further evaluation, including pulmonary imaging, ECG, CBC with differential and a metabolic profile, including liver and renal function tests. C-reactive protein (CRP), D-dimer and ferritin are also often obtained for their prognostic value. These patients need close monitoring, preferably in a facility with airborne infection isolation rooms.  In addition to treatment of bacterial pneumonia or sepsis when suspected, consideration should also be given to treatment with corticosteroids. Remdesivir is recommended for patients who require supplemental oxygen but whether it’s effective in those with more severe hypoxemia (eg, those who require oxygen through a high-flow device, noninvasive or invasive mechanical ventilation or extracorporeal membrane oxygenation-ECMO) is unclear. Prone ventilation may be helpful here in patients with refractory hypoxemia as long as it is not used to avoid intubation in those who otherwise require mechanical ventilation.

“Critical” illness category is the severest forms of Covid-19 and includes acute respiratory distress syndrome (ARDS), septic shock, cardiac dysfunction and cytokine storm. In addition to treatment for possible bacterial pneumonia or sepsis when suspected, corticosteroids and supportive treatment for hemodynamic instability and ARDS, including prone ventilation, are often required. The effectiveness of remdesivir in patients with severe hypoxemia (see above) is unclear at this time.

 

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 References

  1. NIH COVID-19 Treatment Guidelines. https://www.covid19treatmentguidelines.nih.gov/. Accessed Aug 27, 2020.
  2. CDC. Covid-19.  https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/people-with-medical-conditions.html/. Accessed Aug 27, 2020.  

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

 

How might categorizing severity of illness help in the management of my patient with Covid-19?

What’s the role of small droplets or aerosolized particles in the transmission of Covid-19?

Although transmission of SARS-CoV-2 is often considered to occur through large respiratory droplets by coughing or sneezing, emerging data suggests that smaller respiratory particles (5 microns or less) generated by breathing, speaking or singing also account for a sizeable number of infections. Several lines of evidence make a cogent argument for aerosols serving as an important mode of transmission for SARS-CoV-2. 1-9

 First, there are ample accounts of SARS-CoV-2 spreading by being near an infected individual without symptoms.  Since by definition, those without symptoms do not cough or sneeze transmission must have occurred through other means, including breathing, talking or touching surfaces that might have become secondarily contaminated through aerosol.1,2,5  To make matters worse, the peak of contagion in infected individuals occurs on or before symptoms occur.1

Second, aerosolized SARS-CoV-2 has been shown to remain viable in the air for at least 3 hours and viral RNA (not necessarily viable virus) has been found in the air outside patient rooms and inside patient rooms in the absence of cough.2,9 One study found SARS-CoV-2 in outdoor air at a hospital entrance and in front of a department store.7

Third, contaminated air samples and long-range aerosol transport and transmission have been reported by several studies involving a related coronavirus, SARS-CoV-1, the agent of SARS.2

What’s the ramifications of aerosol transmission of Covid-19? The most obvious is the requirement for universal wearing of masks or face covers in public spaces even when 6 feet apart. This practice is particularly important indoors where the amount of ventilation, number of people, duration of stay in the facility, and airflow direction may impact the risk of exposure to SARS-CoV-2.1

The other potential ramification of aerosolized SARS-CoV-2 is that due to their smaller size, these virus-laden particles may bypass the upper respiratory tract and be inhaled directly into the lungs resulting in more severe disease.4  So it really makes sense to routinely wear a mask when out in public places.

Bonus Pearl: Did you know that 1 minute of loud speaking could generate over 1000 virus-containing aerosols in the air with a “super-emitter” generating over 100,000 virus particles in their droplets during the same time?1

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 References

  1. Prather KA, Wang CC, Schooley RT. Reducing transmission of SARS-CoV-2. Science. May 27, 2020.
  2. Anderson EL, Turnham P, Griffin JR, et al. Consideration of the aerosol transmission for COVID-19 and public health. Risk Analysis 2020;40:902-7.
  3. Hamner L, Dubbel P, Capron I, et al. High SARS-CoV-2 attack rate following exposure at a choir practice-Skagit County, Washington, March 2020. MMWR 2020; 69: 606-10.
  4. Gralton J, Tovey E, McLaws ML, et al. The role of particle size in aerosolized pathogen transmission: a review. J Infect 2011;62:1-13.
  5. Asadi S, Bouvier N, Wexler AS et al. The coronavirus pandemic and aerosols: does COVID-19 transmit via expiratory particles. Aerosol Sci Technol 2020;54:635-38.
  6. Morawska L, Cao J. Airborne transmission of SARS-CoV-2: the world should face the reality. Env International 2020;139:105730.
  7. Liu Y, Ning Z, Chen Y, e al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature 2020;582:557-60. https://www.nature.com/articles/s41586-020-2271-3.pdf
  8. Somsen GA, van Rijn C, Kooij S, et al. Small droplet aerosols in poorly ventilated spaces and SARS-CoV-2 transmission. Lancet Respir Med 2020; May 27. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7255254/pdf/main.pdf

9. Santarpia JL, Rivera DN, Herrera V, et al. Transmission potential of SARS-CoV-2 in viral shedding observed at the University of Nebraska Medical Center. 2020 (Preprint) https://www.ehs.ucsb.edu/files/docs/bs/Transmission_potential_of_SARS-CoV-2.pdf

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

What’s the role of small droplets or aerosolized particles in the transmission of Covid-19?

How can people with a respiratory virus such as Covid-19 be contagious even when they don’t cough or sneeze?

Couple of factors likely play a role in the transmission of respiratory viruses such as Covid-19 even in the absence of respiratory symptoms: 1. Generation of small droplets through everyday activities such as talking and breathing; 2. Presence of infectious virus in the respiratory tract before onset of symptoms.1-4

Small droplet generation during every day activity: Normal human speech and breathing can yield small particles or droplets that are too small to see by naked eye but are perfectly capable of serving as vehicles for aerial transport (more like hot air balloons than 737’s!) of a variety of communicable respiratory pathogens. 1  These small particles are believed to originate from the mucosal layers coating the respiratory tract as well as from vocal cord adduction and vibration within the larynx.1

In some cool experiments involving normal volunteers,1 the rate of particle emission during normal human speech positively correlated with the loudness of voice, ranging from 1-50 particles/second, irrespective of the language spoken (English, Spanish, Mandarin, or Arabic).  Perhaps, equally intriguing was identification of “speech superemitters”, consistently releasing an order of magnitude more particles than other participants.

Simply counting out loud has been associated with around 2-10 times as many total particles emitted as a single cough, 2 and the percentage of airborne droplet nuclei generated by singing is several times more than that emitted during normal talking and more like that of coughing! 3 Given, these observations, perhaps, the unfortunate outbreak of Covid-19 among members of a church choir in state of Washington 5 is not totally unexpected.

Presence of infectious virus in persons without symptoms:  An estimated 18% to 75% of patients testing positive for Covid-19 have no symptoms. This of course means that irrespective of whether symptoms ever develop, persons with Covid-19 may serve as a source of infection, by just breathing, talking, or singing when around susceptible people.

For these reasons, social distancing and wearing of masks during a pandemic makes sense!

Bonus Pearl: Did you know that infectious viral particles can be recovered from 40% of breath samples of patients with influenza? 6

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 References

  1. Asadi S, Wexler AS, Cappa CD, et al. Aerosol emission and superemission during human speech increase with voice loudness. Scientific Reports 2019;9:2348. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6382806/
  2. Loudon RG, Roberts RM. Droplet expulsion from the respiratory tract. Am Rev Resp Dis 1967;435-42. https://doi.org/10.1164/arrd.1967.95.3.435
  3. Loudon RG, Roberts MR. Singing and the dissemination of tuberculosis. Am Rev Resp Dis 1968;98:297-300. DOI: 10.1164/arrd.1968.98.2.297 https://www.atsjournals.org/doi/abs/10.1164/arrd.1968.98.2.297?journalCode=arrd
  4. Lai KM, Bottomley C, McNerney. Propagation of respiratory aerosols by the Vuvuzela. PLoS One 2011;6:e20086. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3100331/
  5. Read R. A choir decided to go ahead with rehearsal. Now dozens of members have COVID-19 and two are dead. Los Angeles Times March 29, 2020. https://www.latimes.com/world-nation/story/2020-03-29/coronavirus-choir-outbreak
  6. Yan J, Grantham M, Pantelic J, et al. Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a college community. PNAS 2018;115:1081-1086 https://www.pnas.org/content/115/5/1081

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

How can people with a respiratory virus such as Covid-19 be contagious even when they don’t cough or sneeze?

What’s the evidence that people without symptoms can transmit Covid-19 to those around them?

Rapid spread of Covid-19 virus has been attributed in large part to its ease of transmission from person to person even before symptoms develop, particularly since an estimated 18% to 75% of patients testing positive for Covid-19 have no symptoms. 1-4

Transmission before onset of symptoms (presymptomatic): Modeled estimates for the percentage of transmissions that occur from presymptomatic patients range from 37% to as high as 62% based on studies of patients in the cities of Tianjin and Guangzhou in China, as well as Singapore.5-7 Infectiousness appears to begin within 1-3 days prior to symptoms.8-10

Transmission when symptoms never develop (asymptomatic): Asymptomatic transmission was invoked in a familial cluster in Anyang, China where 5 patients developed Covid-19 after a 6th asymptomatic family member returned home from Wuhan, China. The asymptomatic patient never developed symptoms—such as fever or respiratory symptom— and had a normal chest CT, but briefly tested positive for Covid-19 by RT-PCR before testing negative later.11

It’s important to point out that up to ~75% of patients who are initially “asymptomatic” later develop symptoms. 12-14 So what we often call “asymptomatic” may actually be “presymptomatic.”

Transmission of Covid-19 before onset of symptoms is in distinct contrast to SARS, another coronavirus disease, which was transmitted only when a person was symptomatic and was easier to control. This unique property among coronaviruses may be explained by the high tropism of Covid-19 virus not only for the lungs (as in case of SARS virus) but also for the upper respiratory tract.15,16 As such, Covid-19 behaves more like influenza viruses whose upper respiratory tract binding is thought to promote their rapid transmission even before symptoms develop.17  No wonder, Covid-19 spread like wild fire!

 

Coauthor, Bruce Tiu, Harvard Medical Student, Boston, MA

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 

References

 

  1. Mizumoto K, Kagaya K, Zarebski A, et al. Estimating the asymptomatic proportion of coronavirus diseae 2019 (COID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Euro Surveill.2020;25(10):pii=2000180 https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2020.25.10.2000180?ftag=MSF0951a18
  2. Kimaball, A, Hatfield KM, Arons M, et al. Asymptomatic and presymptomatic SARS-CoV-2 infections in residents of a long-term care skilled nursing facility—King County, Washington, March 2020. MMWR 2020;69:377-381. https://www.cdc.gov/mmwr/volumes/69/wr/mm6913e1.htm
  3. Hu Z, Song C, Xu C, et al. Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. Sci China Life Sci 2020 Mar 4. https://www.ncbi.nlm.nih.gov/pubmed/32146694
  4. Day M. Covid-19: identifying and isolating asymptomatic people helped eliminate virus in Italian village. BMJ 2020;368 https://www.bmj.com/content/368/bmj.m1165
  5. He X, Lau E, Wu P, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. medRxiv. https://www.medrxiv.org/content/10.1101/2020.03.15.20036707v2
  6. Ferretti L, Wymant C, Kendall M, et al. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing [published online ahead of print, 2020 Mar 31]. Science. 2020; eabb6936. https://science.sciencemag.org/content/early/2020/03/30/science.abb6936
  7. Ganyani T, Kremer C, Chen D, et al. Estimating the generation interval for COVID-19 based on symptom onset data. medRxiv. https://www.medrxiv.org/content/10.1101/2020.03.05.20031815v1
  8. Wei WE, Li ZB, Chiew CJ, et al. Presymptomatic transmission of SARS-CoV-2 — Singapore, January 23–March 16, 2020. MMWR Morb Mortal Wkly Rep. ePub: 1 April 2020. https://www.cdc.gov/mmwr/volumes/69/wr/mm6914e1.htm
  9. He X, Lau E, Wu P, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. medRxiv. https://www.medrxiv.org/content/10.1101/2020.03.15.20036707v2
  10. Rothe C, Schunk M, Sothmann P, et al. Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany. N Engl J Med. 2020;382(10):970–971. https://www.nejm.org/doi/full/10.1056/NEJMc2001468
  11. Bai Y, Yao L, Wei T, et al. Presumed Asymptomatic Carrier Transmission of COVID-19 [published online ahead of print, 2020 Feb 21]. JAMA. 2020;e202565. https://jamanetwork.com/journals/jama/fullarticle/2762028
  12. Kimball A, Hatfield KM, Arons M, et al. Asymptomatic and Presymptomatic SARS-CoV-2 Infections in Residents of a Long-Term Care Skilled Nursing Facility — King County, Washington, March 2020. MMWR Morb Mortal Wkly Rep. 2020;69:377–381 https://www.cdc.gov/mmwr/volumes/69/wr/mm6913e1.htm
  13. Chen, C. “What We Need to Understand About Asymptomatic Carriers if We’re Going to Beat Coronavirus”. ProPublica. 2020. https://www.propublica.org/article/what-we-need-to-understand-about-asymptomatic-carriers-if-were-going-to-beat-coronavirus
  14. WHO. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). 2020. https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
  15. Woelfel R, Corman VM, Guggemos W, et al. Clinical presentation and virological assessment of hospitalized cases of coronavirus disease 2019 in a travel-associated transmission cluster. medRxiv. https://www.medrxiv.org/content/10.1101/2020.03.05.20030502v1
  16. Peiris JS, Chu CM, Cheng VC, et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet. 2003;361(9371):1767–1772. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(03)13412-5/fulltext
  17. van Riel D, den Bakker MA, Leijten LM, et al. Seasonal and pandemic human influenza viruses attach better to human upper respiratory tract epithelium than avian influenza viruses. Am J Pathol. 2010;176(4):1614–1618. https://wwwnc.cdc.gov/eid/article/26/6/20-0357_article

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

What’s the evidence that people without symptoms can transmit Covid-19 to those around them?