Are women at higher risk of Covid-19 vaccine-related adverse events?

Data to date shows a preponderance of Covid-19 vaccine-related adverse events (AEs) among women compared to men. This finding may be due to the generally more robust immunological response to infections and vaccines among women, increased reporting of AEs by women, genetic factors, microbiome differences as well as other factors.1-3

A CDC study involving mRNA vaccines (Pfizer and Moderna) during the 1st month of vaccination roll out in the US, found that nearly 80% of adverse events were reported by women.  The great majority (>90%) of these AEs were not serious and included symptoms such as headache, dizziness and fatigue.1

A JAMA study involving individuals receiving one of the mRNA vaccines found that 94% (Pfizer) and 100% (Moderna) of anaphylaxis events occurred among women. Of note, the median age was ~40 years  with the majority of anaphylaxis events were reported after the first dose. 2

Higher incidence of AEs following Covid-19 vaccination is not surprising and may be explained biologically. Women typically have a more robust immune response to infections and vaccination, both at the level of innate and adaptive immunity with higher antibody responses.  

These findings may be in part due to hormones such as estrogen which is known to enhance differentiation of dendritic cells and proinflammatory cytokine production. Other proposed mechanisms include differences in microbiome between sexes and sex-based genetic influences on humoral immune profile with the X chromosome expressing 10 times more genes than the Y chromosome, including genes that influence immunity.3

Bonus Pearl: Did you know that anaphylactic reaction to the mRNA Covid-19 vaccines is extremely rare, occurring in only 2-5 cases/ million!2

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. Gee J, Marquez P, Su J, et al. First month of Covid-19 vaccine safety monitoring—United States, December 14, 2020—January 13, 2021. MMWR 2021;70:283-88. https://www.cdc.gov/mmwr/volumes/70/wr/mm7008e3.htm
  2. Shimabukuro TT, Cole M, Su JR. Reports of anaphylaxis after receipt of mRNA Covid-19 vaccines in the US—December 14, 2020-January 18, 2021. JAMA 20201;325:1101-1102. https://jamanetwork.com/journals/jama/fullarticle/2776557
  3. Fischinger S, Boudreau CM, Butler AL, et al. Sex differences in vaccine-induced humoral immunity. Semin Immunopath 2019;41:239-49. https://pubmed.ncbi.nlm.nih.gov/30547182/

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Mercy Hospital-St. Louis or its affiliate healthcare centers, Mass General Hospital, Harvard Medical School or its affiliated institutions. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

Are women at higher risk of Covid-19 vaccine-related adverse events?

What’s the connection between Covid-19 and persistent fatigue?

Fatigue is one of the most common symptoms in patients with Covid-19, both during the acute illness as well during the weeks or months that follows it. Depending on the study, fatigue has been reported in around 30%-80% of patients at 2-3 weeks to 6 months or longer after the onset of illness (1-4).

In a study of hospitalized patients with Covid-19, ~80% of patients complained of fatigue during the acute illness, with ~50% having persistent fatigue at a mean follow-up of 60 days following onset of illness (1). Persistent fatigue was the most common symptom during the post-Covid-19 period, followed by dyspnea, joint pain, chest pain and cough.

In another study, 52.3% of patients with Covid-19 complained of persistent debilitating fatigue at a median of 10 weeks after initial onset of symptoms, despite a negative test for the virus (2). Of interest, there was no association between severity of Covid-19 illness/need for hospitalization and post-covid fatigue.  No association was found between routine laboratory markers of inflammation, WBC profile, LDH, C-reactive protein or interleukin-6 levels and persistent fatigue.

A CDC survey of outpatients with Covid-19 patients at 14-21 days from test date found persistent fatigue in one-third of patients (3).   

A MedRxive study (pending peer review) of over 3700 patients with definite (27%) or probable diagnosis of Covid-19 from 56 countries (>90% not hospitalized) reported fatigue in 78% of patients after 6 months (4).

Although the true nature or course of persistent fatigue following Covid-19 has yet to be clearly defined, In some respects, it’s reminiscent of chronic fatigue syndrome associated with many acute viral infections, such as SARS, EBV, and enteroviruses (5-7).

Bonus pearl: Did you know that persistent fatigue following Covid-19 may be more frequent than that following influenza in which >90% of outpatients recover within about 2 weeks (3)?

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. Carfi A, Bernabei R, Landi. Persistent symptoms in patients after acute COVID-19.JAMA 2020;324:603-605. https://pubmed.ncbi.nlm.nih.gov/32644129/
  2. Townsend L, Dyer AH, Jones K, et al. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLOS ONE 2020. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0240784   
  3. Tenforde MW, Kim SS, Lindsell CJ, et al. Duration and risk factors for delayed return to usual health among outpatients with COVID-19 in a multistate health care systems network—United States, March—June 2020. MMWR 2020;69:993-98. https://www.cdc.gov/mmwr/volumes/69/wr/mm6930e1.htm
  4. Davis HE, Assaf GS, MCorkell L, et al. Characterizing long COVID in an international cohort:7 months of symptoms and their impact. MedRxive 2020. https://www.medrxiv.org/content/10.1101/2020.12.24.20248802v2.full.pdf
  5. Chia JKS, Chia AY. Chronic fatigue syndrome is associated with chronic infection of the stomach. Clin Pathol 2008;61:43-48. https://jcp.bmj.com/content/61/1/43
  6. Moldofsky H, Patcai J. Chronic widespread musculoskeletal pain, fatigue, depression and disordered sleep in chronic post-SARS syndrome; a case control study. BMC Neurol 2011;11:37. https://pubmed.ncbi.nlm.nih.gov/21435231/
  7. Hickie I, Davenport T, Whitfield D, et al. Post-infective and chronic fatigue syndrome precipitated by pathogens: prospective cohort study. BMJ 2006;333:575. https://jcp.bmj.com/content/61/1/43

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Mercy Hospital or its affiliated institutions. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

What’s the connection between Covid-19 and persistent fatigue?

Key clinical pearls on the management of patients suspected of or diagnosed with Covid-19 in the outpatient setting

Here are some key points to remember when managing patients with Covid-19 symptoms in the outpatient setting.  These points are primarily based on the CDC guidelines and the current literature. They may be particularly useful to primary care providers (PCP) who do not have ready access to Covid-19 test kits or radiographic imaging in the diagnosis of patients suspected of or diagnosed with Covid-19.

  • Isolation precautions. 1,6-7 Minimize chances of exposure by placing a facemask on the patient and placing them in an examination room with the door closed. Use standard and transmission-based precautions including contact and airborne protocols when caring for the patient. Put on an isolation gown and N95 filtering facepiece respirator or higher. Use a facemask if a respirator is not available. Put on face shield or goggles if available. Adhere to strict hand hygiene practices with the use of alcohol-based hand rub with greater than 60% ethanol or 70% isopropanol before and after all patient contact. If there is no access to alcohol-based hand sanitizers, the CDC recommends hand washing with soap and water as the next best practice.

 

  • Risk Factors.2-3 Older patients and patients with severe underlying medical conditions seem to be at higher risk for developing more serious complications from Covid-19 illness. Known risk factors for severe Covid-19 include age over 60 years, hypertension, diabetes, cardiovascular disease, chronic respiratory disease, and immunosuppression.

 

  • Symptoms.2,4,8,9 Reported illnesses have ranged from mild symptoms to severe illness and death. These symptoms may appear after a 2- to 14-day incubation period.
    • Fever at any time 88-99%
    • Cough 59-79%
    • Dyspnea 19-55%
    • Fatigue 23-70%
    • Myalgias 15%-44%
    • Sputum production 23-34%
    • Nausea or vomiting 4%-10%
    • Diarrhea 3%-10%
    • Headache 6%-14%
    • Sore throat 14%
    • Rhinorrhea/nasal congestion (4.8%)
    • Anosmia (undocumented percentage)

 

  • Treatment for mild illness.5 Most patients have mild illness and are able to recover at home. Counsel patients suspected to have Covid-19 to begin a home quarantine staying in one room away from other people as much as possible. Patients should drink lots of fluids to stay hydrated and rest. Over the counter medicines may help with symptoms. There is controversy regarding the safety of NSAIDs in Covid-19 (See related P4P pearl). Generally, symptoms last a few days and  patients get better after a week. There is no official guidance from the CDC or other reliable sources on how often a PCP should check in with a patient confirmed with Covid-19 and in quarantine. Please use good judgement and utilize telehealth capabilities via phone call, video call, etc… if possible.

 

  • Treatment for severe illness.3 Patients should be transferred immediately to the nearest hospital. If there is no transfer service available, a family member with appropriate personal protective equipment (PPE) precautions, should drive patient to nearest hospital for critical care services.

 

  • Ending home isolation. 5
    • Without testing: Patients can stop isolation without access to a test result after 3 things have happened. 1) No fever for at least 72 hours. This is 3 full days of no fever and without the use of medication that reduces fever; 2) Respiratory symptoms have improved.; and 3) At least 7 days have passed since symptoms first appeared.
    • With testing. 5 Home isolation may be ended after all of the following 3 criteria have been met: 1) No fever for at least 72 hours. This is 3 full days of no fever and without the use of medication that reduces fever; 2) Respiratory symptoms have improved; and 3) Negative results from at least 2 consecutive nasopharyngeal swab specimens collected more than 24 hours apart.

To all the healthcare providers out there, please be safe and stay healthy!

 

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 

Contributed by Erica Barnett, Harvard Medical Student, Boston, MA.

 

References:

  1. CDC. Evaluating and Testing Persons for Coronavirus Disease 2019 (COVID-19). https://www.cdc.gov/coronavirus/2019-nCoV/hcp/clinical-criteria.html
  2. CDC. Symptoms and Testing. https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/index.html
  3. World Health Organization. Operational Considerations for case management for COVID-19 in health facility and community. https://apps.who.int/iris/bitstream/handle/10665/331492/WHO-2019-nCoV-HCF_operations-2020.1-eng.pdf
  4. Partners in Health. Resource Guide 1: Testing, Tracing, community management. https://www.pih.org/sites/default/files/2020-03/PIH_Guide_COVID_Part_I_Testing_Tracing_Community_Managment_3_28.pdf
  5. CDC. Caring for someone at home. https://www.cdc.gov/coronavirus/2019-ncov/if-you-are-sick/care-for-someone.html
  6. CDC. Using PPE. https://www.cdc.gov/coronavirus/2019-ncov/hcp/using-ppe.html
  7. CDC. Hand Washing. https://www.cdc.gov/coronavirus/2019-ncov/hcp/hand-hygiene.html
  8. Harvard Health Publishing. COVID-19 Basics. https://www.health.harvard.edu/diseases-and-conditions/covid-19-basics
  9. Guan W, Ni Z, Hu Y, et al. Clinical characteristics of Coronavirus disease 2019 in China. N Engl J Med 2020, March 6. DOI:10.1056/NEJM022002032 https://www.ncbi.nlm.nih.gov/pubmed/32109013

 

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

Key clinical pearls on the management of patients suspected of or diagnosed with Covid-19 in the outpatient setting

How should I interpret a positive result for serum cryoglobulins?

Cryoglobulins (CGs) are immunoglobulins that precipitate in the blood under cold conditions (<37◦ C) and redissolve upon warming1.  The term “cryoglobulinemia” is commonly used to describe patients with a systemic inflammatory syndrome that is often associated with small-to-medium vessel vasculitis due to cryoglobulin-containing immune complexes. Although some patients with cryoglobulinemia may be asymptomatic, most present with a range of diseases characterized by fatigue, arthralgia, skin rashes or necrosis, purpura, neuropathy, bowel wall ischemia and/or glomerulonephritis and kidney failure.

Wintrobe and Buell are credited for first describing cryglobulinemia in 1933 when assessing a patient who ultimately was found to have multiple myeloma2. Since then the spectrum of diseases associated with CG has expanded to also include seemingly disparate conditions such as hepatitis C, autoimmune disorders and monoclonal gammopathy of undetermined significance (MGUS).  A commonly cited classification scheme for CG is shown (Table)3.   It should be emphasized that some CGs may not fit neatly into this scheme.

In our patient, the positive CG serum test should be interpreted in the clinical context in which it was obtained while searching for risk factors as well as signs and symptoms that may be associated with cryoglobulinemia.

 

Table. Classification of cryoglobulinemia

Category Description Examples
Type I Isolated monoclonal immunoglobulin, either IgM or IgG (less commonly IgA or free immunoglobulin light chains Multiple myeloma, Waldenström’s macroglobulinemia, monoclonal gammopathy of undetermined significance (MGUS)
Type II Mixture of monoclonal IgM and polyclonal IgG Hepatitis C, HIV, other viral infections
Type III Polyclonal mixture IgM and IgG Autoimmune disorders, hepatitis C

References

  1. Takada S, Shimizu T, Hadano Y, et al. Cryoglobulinemia (review). Mol Med Rep 2012;6:3-8
  2. Wintrobe MM, Buell MV. Hyperproteinemia associated with multiple myeloma. Bull Johns Hopkins Hosp 52: 156-165, 1933
  3. Brouet JC, Clauvel JP, Danon F, et al. Biological and clinical significance of cryoglobulins. Am J Med 1974; 57:775-88.

 

Contributed by Kirstin Scott, Medical Student, Harvard Medical School

How should I interpret a positive result for serum cryoglobulins?