Why do we often prescribe ceftriaxone in preference to fluoroquinolones for prophylaxis of infections in patients with cirrhosis and upper GI bleed?

Preference of ceftriaxone over fluoroquinolones (FQs) for prophylaxis of infection in patients with cirrhosis and upper GI bleed (UGIB) can often be traced back to a small 2006 Spanish randomized controlled trial (RCT)1 which found a significantly lower rate of proved or possible bacterial infection and lower rate of fermentative Gram-negative bacilli infection in the ceftriaxone group (vs norfloxacin) over a 10-day period (11% vs 33% and 0% vs 11%, respectively). There was no significant difference in the incidence of proved bacterial infection (spontaneous bacterial peritonitis or bacteremia, P=0.07) or 10-day mortality between the 2 groups.   

It’s worth emphasizing that the primary impetus for this study was evaluation of the efficacy of ceftriaxone in patients with cirrhosis and UGIB in a setting where FQ Gram-negative bacilli was thought to be highly prevalent. Parenthetically, a similar RCT performed where the prevalence of FQ resistance was considered low failed to find a significant difference in breakthrough bacterial infection, rebleeding or mortality when ceftriaxone was compared to IV ciprofloxacin.2

Another caveat of the 2006 study was that an IV antibiotic (ceftriaxone) was compared to a oral antibiotic (norfloxacin) which, in the setting of active UGIB, may be problematic.

Despite these limitations, its favorable safety profile compared to FQs coupled with its ease of administration has often made ceftriaxone the drug of choice for prophylaxis of infections in patients with cirrhosis and UGIB. The 2016 Practice Guidance by the American Association for the Study of Liver Diseases considers ceftriaxone as the first choice in patients with advanced cirrhosis, on FQ prophylaxis, and in hospital settings with high prevalence of FQ resistant bacterial infection.3

Bonus Pearl: Did you know that the prevalence of FQ resistant in Enterobacteriaceae may be as high as 30% in certain regions of U.S. and >50% in certain regions of the world? 4

Also see related 2 P4P pearls (1, 2) on the association of UGIB bleed with infections in patients with cirrhosis.

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. Fernandez J, Del Arbol LR, Gomez C, et al. Norfloxacin vs ceftriaxone in the prophylaxis of infections in patients with advanced cirrhosis and hemorrhage. Gastroenterol 2006;131:1049-1056. https://pubmed.ncbi.nlm.nih.gov/17030175/
  2. Pittayanon R, Reknimir R, Kullavanijaya P, et al. Intravenous ciprofloxacin vs ceftriaxone for the prevention of bacterial infections in cirrhotic patients with gastrointestinal bleeding:A randomized controlled trial. Thai J Gastroenterol 2016;17:24-30. http://www.thaigastro.com/books.php?act=content&content_id=476&book_id=61
  3. Garcia-Tsao G, Abraldes JG, Berzigotti A, et al. Portal hypertensive bleeding in cirrhosis:risk stratification, diagnosis and management: 2016 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology 2017;65:310-335. https://pubmed.ncbi.nlm.nih.gov/27786365/
  4. Spellberg B, Doi Y. The rise of fluoroquinolone-resistant Escherichia coli in the community:scarier than we thought. J Infect Dis 2015;212:1853-1855. https://pubmed.ncbi.nlm.nih.gov/25969562/

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Mercy Hospital-St. Louis, Massachusetts General Hospital, Harvard Catalyst, Harvard University, their affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

Why do we often prescribe ceftriaxone in preference to fluoroquinolones for prophylaxis of infections in patients with cirrhosis and upper GI bleed?

Why are antibiotics routinely administered in patients with cirrhosis and upper gastrointestinal (GI) bleed?

Antibiotic prophylaxis in patients with cirrhosis and upper gastrointestinal bleed (UGIB) reduce bacterial infections, all-cause mortality, bacterial infection, mortality, rebleeding events and hospitalization.1

A 2011 Cochrane meta-analysis involving 12 trials comparing antibiotic prophylaxis to no prophylaxis or placebo found reduction in bacterial infection (RR 0.35, 95% C.I., 0.26-0.47) and overall mortality (RR 0.79, 95% C.I. 0.63-0.98). It also found a significant reduction in rebleeding and days of hospitalization, based on more limited data. Trials in this meta-analysis involved a variety of antibiotics, including norfloxacin, ciprofloxacin, cefazolin, cefotaxime, ceftriaxone and ampicillin-sulbactam. 1

So why is ceftriaxone the often-favored bacterial prophylaxis in UGIB? First, infections in cirrhotic patients often originate from bacterial translocation through the GI tract with aerobic gram-negative GI flora expected to be susceptible to ceftriaxone.2 Second, the emerging quinolone resistance among aerobic Gram-negative bacteria 2 and frequent use of ciprofloxacin for prophylaxis against spontaneous bacterial peritonitis have made use of ceftriaxone in this setting more desirable than quinolones.

Of note, a 2006 study involving patients with advanced cirrhosis (Child Pugh B or C) and GI hemorrhage receiving either norfloxacin or ceftriaxone for 7 days found a significantly lower risk of suspected or proven infections (11% vs 33%) and bacteremia or spontaneous bacterial peritonitis (2% vs 12%) in the ceftriaxone group; there was no difference in hospital mortality. 3 Although the overall prevalence of quinolone-resistant gram-negatives was unknown, 6 of 7 gram-negative bacilli isolated in the norfloxacin group were quinolone resistant.

Bonus Pearl: Did you know that 30-40% of cirrhotic patients presenting with UGIB will develop a bacterial infection within a week of their admission? 1

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. Chavez-Tapia NC, Barrientos-Gutierrez T, Tellez-Avila F, et al. Meta-analysis: antibiotic prophylaxis for cirrhotic patients with upper gastrointestinal bleeding-an updated Cochrane review. Aliment Pharmacol Ther 2011;34:509-518. https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1365-2036.2011.04746.x
  2. Mallet M, Rudler M, Thabut D. Variceal bleeding in cirrhotic patients. Gastroenterology Reports 2017;5:185-192. https://academic.oup.com/gastro/article/5/3/185/4002779
  3. Fernandez J, del Arbo LR, Gomez C, et al. Norfloxacin vs ceftriaxone in the prophylaxis of infections in patients with advanced cirrhosis and hemorrhage. Gastroenterology 2006;131:1049-1056. https://www.sciencedirect.com/science/article/abs/pii/S0016508506015356

 

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

Why are antibiotics routinely administered in patients with cirrhosis and upper gastrointestinal (GI) bleed?

Key clinical pearls in the medical management of hospitalized patients with coronavirus (Covid-19) infection

First, a shout-out to dedicated healthcare workers everywhere who have selflessly given of themselves to care for the sick during this pandemic. Thank you! Together, I know we will get through it!

Although our understanding of Covid-19 infection is far from complete, in the spirit of clarity and brevity of my posts on Pearls4Peers, here are some key points I have gleaned from review of existing literature and the CDC that may be useful as we care for our hospitalized patients with suspected or confirmed Covid-19 infection.

  • Isolation precautions.1 Per CDC, follow a combination of airborne (particularly when aerosol generating procedures is anticipated, including nebulizer treatment) and contact precaution protocols. Routinely use masks or respirators, such as N-95s (subject to local availability and policy) and eye protection. Don gowns (subject to local availability and policy) and gloves and adhere to strict hand hygiene practices.

 

  • Diagnostic tests1-9
    • Laboratory tests. Routine admission labs include CBC, electrolytes, coagulation panels and liver and renal tests. Other frequently reported labs include LDH, C-reactive protein (CRP) and procalcitonin. Testing for high sensitivity troponin I has also been performed in some patients, presumably due to concern over ischemic cardiac injury or myocarditis.2 Check other labs as clinically indicated.
    • Chest radiograph/CT chest. One or both have been obtained in virtually all reported cases with CT having higher sensitivity for detection of lung abnormalities.
    • EKG. Frequency of checking EKGs not reported in many published reports thought 1 study reported “acute cardiac injury” in some patients, based in part on EKG findings.4 Suspect we will be checking EKGs in many patients, particularly those who are older or are at risk of heart disease.
    • Point-of-care ultrasound (POCUS). This relatively new technology appears promising in Covid-19 infections, including in rapid assessment of the severity of pneumonia or ARDS at presentation and tracking the evolution of the disease. 9 Don’t forget to disinfect the probe between uses!

 

  • Treatment 1-8
    • Specific therapies are not currently available for treatment of Covid-19 infections, but studies are underway.
    • Supportive care includes IV fluids, 02 supplementation and nutrition, as needed. Plenty of emotional support for patients and their families will likely be needed during these times.
    • Antibiotics have been used in the majority of reported cases, either on admission or during hospitalization when superimposed bacterial pneumonia or sepsis could not be excluded.
      • Prescribe antibiotics against common community-acquired pneumonia (CAP) pathogens, including those associated with post-viral/influenza pneumonia such as Streptococcus pneumoniae (eg, ceftriaxone), and Staphylococcus aureus (eg, vancomycin or linezolid if MRSA is suspected) when concurrent CAP is suspected.
      • Prescribe antibiotics against common hospital-acquired pneumonia (HAP) (eg, vancomycin plus cefepime) when HAP is suspected.
    • Corticosteroids should be avoided because of the potential for prolonging viral replication, unless indicated for other reasons such as COPD exacerbation or septic shock. 1
    • Monitor for deterioration in clinical status even when your hospitalized patient has relatively minor symptoms. This is because progression to lower respiratory tract disease due to Covid-19 often develops during the 2nd week of illness (average 9 days).
    • ICU transfer may be necessary in up to 30% of hospitalized patients due to complications such as ARDS, secondary infections, and multi-organ failure.

 

Again, thank you for caring for the sick and be safe! Feel free to leave comments or questions.

 

 Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 

References

  1. CDC. Interim clinical guidance for management of patients with confirmed coronavirus disease (COVID-19). https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-patients.html
  2. Ruan Q, Yang K, Wang W, Jiang L, et al. Clinical predictors of mortality due to COVID-19 based on analysis of data of 150 patients with Wuhan, China. Intensive Care Med 2020. https://link.springer.com/article/10.1007/s00134-020-05991-x
  3. Holshue ML, BeBohlt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020;382:929-36. https://www.nejm.org/doi/full/10.1056/NEJMoa2001191
  4. Huang C, Wang Y, Li Xingwang, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497-506. https://www.thelancet.com/pdfs/journals/lancet/PIIS0140-6736(20)30183-5.pdf
  5. Young BE, Ong SWX, Kalimuddin S, et al. Epideomiologic features and clinical course of patients infected with SARS-CoV-2 Singapore. JAMA, March 3, 2020. Doi.10.1001/jama.2020.3204 https://www.ncbi.nlm.nih.gov/pubmed/32125362
  6. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical chacteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020;395:507-13. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)30211-7/fulltext
  7. Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl Med 2020, Feb 28, 2020. https://www.nejm.org/doi/full/10.1056/NEJMoa2002032
  8. Zhang J, Zhou L, Yang Y, et al. Therapeutic and triage strategies for 2019 novel coronavirus disease in fever clinics. Lancet 2020;8: e11-e12. https://www.thelancet.com/journals/lanres/article/PIIS2213-2600(20)30071-0/fulltext 9.
  9. Peng QY, Wang XT, Zhang LN, et al. Findings of lung ultrasonography of novel corona virus pneumonia during the 2019-2020 epidemic. Intensive Care Med 2020. https://doi.org/10.1007/s00134-020-05996-
Key clinical pearls in the medical management of hospitalized patients with coronavirus (Covid-19) infection

What changes should I consider in my treatment of hospitalized patients with community-acquired pneumonia (CAP) in light of the 2019 guidelines of the American Thoracic society (ATS) and Infectious Diseases Society of America (IDSA)?

Compared to 2007,1 the 2019 ATS/IDSA guidelines2 propose changes in at least 4 major areas of CAP treatment in inpatients, with 2 “Do’s” and 2 “Dont’s”:

  • Do select empiric antibiotics based on severity of CAP and risk factors for methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (see related pearl on P4P)
  • Do routinely treat CAP patients who test positive for influenza with standard CAP antibiotics
  • Don’t routinely provide anaerobic coverage in aspiration pneumonia (limit it to empyema and lung abscess) (see related pearl on P4P)
  • Don’t routinely treat CAP with adjunctive corticosteroids in the absence of refractory shock

β-lactam plus macrolide is recommended for both non-severe and severe CAP.  β-lactam plus respiratory fluoroquinolone is an alternative regime in severe CAP, though not endorsed as strongly as β-lactam plus macrolide therapy (low quality of evidence).  Management per CAP severity summarized below:

  • Non-severe CAP
    • β-lactam (eg, ceftriaxone, cefotaxime, ampicillin-sulbactam and newly-added ceftaroline) plus macrolide (eg, azithromycin, clarithromycin) OR respiratory fluoroquinolone (eg, levofloxacin, moxifloxacin)
    • In patients at risk of MRSA or P. aeruginosa infection (eg, prior isolation of respective pathogens, hospitalization and parenteral antibiotics in the last 90 days or locally validated risk factors—HCAP has been retired), obtain cultures/PCR
    • Hold off on MRSA or P. aeruginosa coverage unless culture/PCR results return positive.
  • Severe CAP
    • β-lactam plus macrolide OR β-lactam plus respiratory fluoroquinolone (see above)
    • In patients at risk of MRSA or P. aeruginosa infection (see above), obtain cultures/PCR
    • Add MRSA coverage (eg, vancomycin or linezolid) and/or P. aeruginosa coverage (eg, cefepime, ceftazidime, piperacillin-tazobactam, meropenem, imipenem) if deemed at risk (see above) while waiting for culture/PCR results

Duration of antibiotics is for a minimum of 5 days for commonly-targeted pathogens and a minimum of 7 days for MRSA or P. aeruginosa infections, irrespective of severity or rapidity in achieving clinical stability.

For patients who test positive for influenza and have CAP, standard antibacterial regimen should be routinely added to antiinfluenza treatment.

For patients suspected of aspiration pneumonia, anaerobic coverage (eg, clindamycin, ampicillin-sulbactam, piperacillin-tazobactam) is NOT routinely recommended in the absence of lung abscess or empyema.

Corticosteroids are NOT routinely recommended for non-severe (high quality of evidence) or severe (moderate quality of evidence) CAP in the absence of refractory septic shock.

Related pearls on P4P:

2019 CAP guidelines on diagnostics:                                        https://pearls4peers.com/2020/02/14/what-changes-should-i-consider-in-my-diagnostic-approach-to-hospitalized-patients-with-community-acquired-pneumonia-cap-in-light-of-the-2019-guidelines-of-the-american-thoracic-society-ats-and-inf/ 

Anerobic coverage of aspiration pneumonia: https://pearls4peers.com/2019/07/31/should-i-routinely-select-antibiotics-with-activity-against-anaerobes-in-my-patients-with-presumed-aspiration-pneumonia/

References

  1. Mandell LA, Wunderink RG, Anzueto A. Infectious Disease Society of America/American Thoracic Society Consensus Guidelines on the Management guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 2007;44:S27-72. https://www.ncbi.nlm.nih.gov/pubmed/17278083
  2. Metlay JP, Waterer GW, Long AC, et al. Diagnosis and treatment of adults with community-acquired pneumonia. Am J Respir Crit Care Med 2019;200:e45-e67. https://www.ncbi.nlm.nih.gov/pubmed/31573350

 

What changes should I consider in my treatment of hospitalized patients with community-acquired pneumonia (CAP) in light of the 2019 guidelines of the American Thoracic society (ATS) and Infectious Diseases Society of America (IDSA)?

Is cefpodoxime an appropriate oral antibiotic substitute for ceftriaxone when treating patients with respiratory tract infections caused by penicillin-resistant Streptococcus pneumoniae (PRSP)?

Short answer: No!

Although cefpodoxime is also a 3rd generation cephalosporin, its invitro activity against PRSP is not comparable to that of ceftriaxone.  In a study of 21,605 strains of S. pneumoniae collected internationally, whereas 89.1% of PRSP isolates were susceptible to ceftriaxone, only 35% were susceptible to cefpodoxime (1).  Among isolates resistant to penicillin and erythromycin, the susceptibility to ceftriaxone was 86.9% compared to that of 22.7% for cefpodoxime.

This information is important since 32%, and 17.6% of all S. pneumoniae isolates tested in this study  were either penicillin-resistant or penicillin- and erythromycin-resistant, respectively.  

So, when it comes to the coverage of PRSP, there is no oral cephalosporin “equivalent” to ceftriaxone and that includes cefpodoxime.  In fact, the package insert of cefpodoxime states that cefpodoxime is active against S. pneumoniae “excluding penicillin-resistant strains” (2).

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 

References

  1. Pottumarthy S. Fritsche TR, Jones RN. Comparative activity of oral and parenteral cephalosporins tested against multidrug-resistant Streptococcus pneumonia: report from SENTRY Antimicrobial Surveillance Program (1997-2003). Diag Microbiol Infect Dis 2005;51:147-150. https://www.sciencedirect.com/science/article/pii/S0732889304002081    
  2. http://www.accessdata.fda.gov/drugsatfda_docs/label/2007/050674s014,050675s017lbl.pdf; accessed June 20, 2016.
Is cefpodoxime an appropriate oral antibiotic substitute for ceftriaxone when treating patients with respiratory tract infections caused by penicillin-resistant Streptococcus pneumoniae (PRSP)?

In hospitalized patients with community-acquired pneumonia (CAP), has empiric treatment with beta-lactam plus macrolide or a quinolone been shown to be superior to beta-lactam monotherapy ?

Actually no!

In fact, a 2015 study of CAP from Netherlands, published in New England Journal of Medicine, demonstrated that empiric treatment with beta-lactam monotherapy was not inferior to strategies using a beta-lactam-macrolide combination or fluoroquinolone monotherapy with regard to 90-day mortality, or length of hospital stay (1). To help exclude Legionella pneumonia (often accounting for <5% of CAP[2]), urine Legionella antigen was routinely performed in this study.

So once Legionella has been reasonably excluded, unless suspicion for other atypical causes of CAP (i.e. Mycoplasma pneumoniae or Chlamydophila pneumoniae) remains high, empiric monotherapy with a beta-lactam (e.g. ceftriaxone) may be just as effective in many cases of CAP.

References

1. Postma DF1, van Werkhoven CH, van Elden LJ, et al. CAP-START Study Group Antibiotic treatment strategies for community-acquired pneumonia in adults. N Engl J Med. 2015;372:1312-23.  https://www.ncbi.nlm.nih.gov/pubmed/25830421  

2. von Baum H, Ewig S, Marre R, et al. Competence Network for Community Acquired Pneumonia Study Group. Community-acquired Legionella pneumonia: new insights from the German competence network for community acquired pneumonia. Clin Infect Dis 2008;46:1356. https://www.ncbi.nlm.nih.gov/pubmed/18419436

Contributed by Jessica A. Hennessey, MD, PhD, Mass General Hospital, Boston, MA

In hospitalized patients with community-acquired pneumonia (CAP), has empiric treatment with beta-lactam plus macrolide or a quinolone been shown to be superior to beta-lactam monotherapy ?

My patient with foot osteomyelitis due to methicillin-sensitive Staphylococcus aureus (MSSA) is ready to go home on IV antibiotic therapy. Is daily ceftriaxone therapy an appropriate option?

Yes, it appears to be!  Ceftriaxone is active against MSSA and may be an option for treatment of infections due to this organism at least in certain situations.  

In a retrospective study comparing ceftriaxone to oxacillin for osteoarticular infections due to MSSA, there was no difference in treatment success at 3-6 and > 6 months following completion of IV antibiotics; oxacillin had to be discontinued more often due to toxicity, however (1).    

In another retrospective study comparing cefazolin to ceftriaxone for treatment of MSSA infections ( ≥50% of patients with osteomyelitis),  favorable outcomes, adverse events and complications were similar between the 2 groups (2). 

Several other studies have reported no significant difference in treatment failure between cefazolin and ceftriaxone in MSSA infections (3).  A smaller retrospective study, however, reported higher rate of treatment failure (defined to include unplanned extension of parenteral therapy) with ceftriaxone in MSSA bacteremia without finding any difference in time to blood culture clearance, or rates of persistent bacteremia, relapse after treatment, achievement of source control, mortality or readmission (3).

References

1. Wieland BW, Marcantoni JR, Bommarito KM, et al. A retrospective comparison of ceftriaxone versus oxacillin for osteoarticular infections due to methicillin-susceptible Staphylococcus aureus. Clin Infect Dis 2012;54:585-590. https://www.ncbi.nlm.nih.gov/pubmed/22144536

2.  Winans SA, Luce Am, Hasbun R. Outpatient parenteral antimicrobial therapy for the treatment of methicillin-susceptible Staphylococcus aureus: a comparison of cefazolin and ceftriaxone. Infection 2013;41:769-774. https://www.ncbi.nlm.nih.gov/pubmed/23686435

3. Carr DR, Stiefel U, Bonomo RA, etal. A comparison of cefazolin versus ceftriaxone for the treatment of methicillin-susceptible Staphylococcus aureus bacteremia in a tertiary care VA medical center. Open Forum Infectious Diseases, Volume 5, Issue 5, 1 may 2018, ofy089. https://academic.oup.com/ofid/article/5/5/ofy089/4999397

 

If you liked this pearl, sign up under menu and receive future pearls straight into your mailbox!  

My patient with foot osteomyelitis due to methicillin-sensitive Staphylococcus aureus (MSSA) is ready to go home on IV antibiotic therapy. Is daily ceftriaxone therapy an appropriate option?