Why are antibiotics routinely administered in patients with cirrhosis and upper gastrointestinal (GI) bleed?

Antibiotic prophylaxis in patients with cirrhosis and upper gastrointestinal bleed (UGIB) reduce bacterial infections, all-cause mortality, bacterial infection, mortality, rebleeding events and hospitalization.1

A 2011 Cochrane meta-analysis involving 12 trials comparing antibiotic prophylaxis to no prophylaxis or placebo found reduction in bacterial infection (RR 0.35, 95% C.I., 0.26-0.47) and overall mortality (RR 0.79, 95% C.I. 0.63-0.98). It also found a significant reduction in rebleeding and days of hospitalization, based on more limited data. Trials in this meta-analysis involved a variety of antibiotics, including norfloxacin, ciprofloxacin, cefazolin, cefotaxime, ceftriaxone and ampicillin-sulbactam. 1

So why is ceftriaxone the often-favored bacterial prophylaxis in UGIB? First, infections in cirrhotic patients often originate from bacterial translocation through the GI tract with aerobic gram-negative GI flora expected to be susceptible to ceftriaxone.2 Second, the emerging quinolone resistance among aerobic Gram-negative bacteria 2 and frequent use of ciprofloxacin for prophylaxis against spontaneous bacterial peritonitis have made use of ceftriaxone in this setting more desirable than quinolones.

Of note, a 2006 study involving patients with advanced cirrhosis (Child Pugh B or C) and GI hemorrhage receiving either norfloxacin or ceftriaxone for 7 days found a significantly lower risk of suspected or proven infections (11% vs 33%) and bacteremia or spontaneous bacterial peritonitis (2% vs 12%) in the ceftriaxone group; there was no difference in hospital mortality. 3 Although the overall prevalence of quinolone-resistant gram-negatives was unknown, 6 of 7 gram-negative bacilli isolated in the norfloxacin group were quinolone resistant.

Bonus Pearl: Did you know that 30-40% of cirrhotic patients presenting with UGIB will develop a bacterial infection within a week of their admission? 1

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.


  1. Chavez-Tapia NC, Barrientos-Gutierrez T, Tellez-Avila F, et al. Meta-analysis: antibiotic prophylaxis for cirrhotic patients with upper gastrointestinal bleeding-an updated Cochrane review. Aliment Pharmacol Ther 2011;34:509-518. https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1365-2036.2011.04746.x
  2. Mallet M, Rudler M, Thabut D. Variceal bleeding in cirrhotic patients. Gastroenterology Reports 2017;5:185-192. https://academic.oup.com/gastro/article/5/3/185/4002779
  3. Fernandez J, del Arbo LR, Gomez C, et al. Norfloxacin vs ceftriaxone in the prophylaxis of infections in patients with advanced cirrhosis and hemorrhage. Gastroenterology 2006;131:1049-1056. https://www.sciencedirect.com/science/article/abs/pii/S0016508506015356


Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

Why are antibiotics routinely administered in patients with cirrhosis and upper gastrointestinal (GI) bleed?

Should my patient with cirrhosis and esophageal varices be considered for partial splenic embolization?


Although limited, the weight of the evidence suggests that patients with cirrhosis and esophageal varices may benefit from partial splenic embolization (PSE).

A 2006 small randomized-controlled trial comparing PSE and endoscopic ligation vs. endoscopic ligation alone in patients with cirrhosis, thrombocytopenia and esophageal varices reported reduced risk of recurrence of varices, progression to variceal bleeding and death over a mean follow-up of 4.8 years. 1

A 2016 meta-analysis of PSE in the management of gastroesophageal variceal hemorrhage arrived at a similar conclusion with respect to reducing the risk of recurrence of varices, variceal hemorrhage and mortality. 2 The studies included in this meta-analysis, however, were small with only 1 randomized-controlled trial (RCT) in the series.

A 2019 small retrospective of patients undergoing transjugular intrahepatic portosystemic shunt (TIPS) placement with or without PSE found a significant benefit in primary shunt patency (period between placement and first shunt dysfunction), but not secondary shunt patency (period between placement and permanent shunt dysfunction) or mortality over a 5-year follow-up.3

Adverse effects of PSE include post-embolization syndrome—a constellation of symptoms such as fever, pain, and nausea/vomiting— reported in 78%-100% of patients. More severe complications up to 15%-30% may also occur with PSE, particularly when around 70% or more of splenic volume is embolized. These complications include pleural effusion/ascites, spontaneous bacterial peritonitis, pulmonary embolism, liver failure, portal vein thrombosis and splenic abscesses which may develop between 10 days to 3 months following the procedure.  Up to 6% of patients undergoing PSE may die of the procedure-related complications. 4-6  

For these reasons, careful selection of patient for PSE and limiting the extent of splenic necrosis to 50% with close monitoring of clinical and ultrasound follow-up, particularly in patients with a volume of splenic necrosis >50%,  have been suggested.6


Fun fact: Did you know that splenic embolization was first performed by Frank E. Maddison of Madison, Wisconsin, in 1973 using autologous clot to treat recurrent gastrointestinal hemorrhage arising from esophageal varies?


Liked this post? Sign up under MENU and catch future pearls right into your inbox!



  1. Ohmoto K, Yoshioka N, Tomiyama Y, et al. Improved prognosis of cirrhosis patients with esophageal varices and thrombocytopenia treated by endoscopic variceal ligation plus partial splenic embolization. Digestive Diseases and Sciences 2006;51:352-58. https://link.springer.com/article/10.1007/s10620-006-3137-8
  2. Wang P, Liu R, Tong L, et al. Partial splenic embolization has beneficial effects for the management of gastroesophageal variceal hemorrhage. Saudi J Gastroenterol 2016;22:399-406. http://europepmc.org/articles/PMC5184739/
  3. Wan Y-M, Li Y-H, Xu Z-Y, et al. Comparison of TIPS alone and combined with partial splenic embolization (PSE) for the management of variceal bleeding. European Radiology 2019; https://doi.org/10.100/s00330-019-06046-6
  4. N’Kontchou G, Seror O, Bourcier V, et al. Partial splenic embolization in patients with cirrhosis: efficacy, tolerance, and long-term outcome in 32 patients. Eur J Gastroenterol Hepatol 2005;17:179-84. https://www.ncbi.nlm.nih.gov/pubmed/15674095
  5. Hadduck TA, McWilliams JP. Partial splenic artery embolization in cirrhotic patients. World J Radiol 2014;28:6:160-168. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4037542/
  6. Smith M, Ray CE. Splenic artery embolization as an adjunctive procedure for portal hypertension. Semin Intervent Radiol 2012;29:135-39. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3444868/
  7. Maddison FE. Embolic therapy of hypersplenism. Invest Radiol 1973;8:280-281. https://journals.lww.com/investigativeradiology/Citation/1973/07000/Embolic_Therapy_of_Hypersplenism.54.aspx


Contributed in part by Theodore R. Pak, MD, PhD, Mass General Hospital, Boston, Massachusetts.

Should my patient with cirrhosis and esophageal varices be considered for partial splenic embolization?

Why are patients with cirrhosis and upper gastrointestinal bleed routinely treated with antibiotics?

Cirrhotic patients with upper gastrointestinal bleed (UGIB) are at high risk of bacterial infections: 22% during the first 48 h after admission, 35-66% within 2 weeks of initial bleeding1. Antibiotic prophylaxis has been shown to reduce short term mortality, bacterial infections, early rebleeding and volume of blood transfused1-4.

But what is the exact connection between UGIB and bacterial infections in cirrhosis? One hypothesis is that UGIB sets up the host for bacterial infection via translocation (eg, due to hypovolemia), procedures necessary in the management of bleeding (eg endoscopy, sclerotherapy, IV access), and aspiration pneumonia. More intriguing is the reverse hypothesis—that is the bacterial infection serves as a trigger for UGIB.  Several lines of evidence support this view1,2.

  • Cirrhotic patients admitted for non-UGIB-related conditions may be 4x more likely to develop UGIB during their hospitalization in the presence of bacterial infection on admission4
  • Infections predispose to early variceal rebleeding
  • Infection/endotoxemia increase portal pressure, and impair liver function and coagulation
  • Commonly cited risk factors for variceal bleeding (eg, hepatic venous pressure gradient, liver function, size of varices) do not readily explain why bleeding occurs unpredictably and why despite daily increases in portal pressure (eg, following daily meals and exercises), UGIB is relatively infrequent.



  1. Thalheimer U, Triantos CK, Samonakis DN, et al. Infection, coagulation, and variceal bleeding in cirrhosis. Gut 2005;54:556-63. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1774431
  2. Goulis J. Bacterial infection in the pathogenesis of variceal bleeding. Is there any role for antibiotic prophylaxis in the cirrhotic patient. Ann Gastroenterol 2001;14:205-11. http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=0ahUKEwjNh-rhlpLVAhXGdD4KHSurANcQFgg4MAM&url=http%3A%2F%2Fwww.annalsgastro.gr%2Findex.php%2Fannalsgastro%2Farticle%2Fdownload%2F80%2F71&usg=AFQjCNHJfAyYAjuNXpwsWGrVuyuxxgJYKg
  3. Soares-Weiser K, Brezis, Tur-Kaspa R, et al. Antibiotic prophylaxis of bacterial infections in cirrhotic inpatients: a meta-analysis of randomized controlled trials. Scand J Gastroenterol 2003;38:193-200. http://www.tandfonline.com/doi/abs/10.1080/00365520310000690
  4. Anastasioua J, Williams R. When to use antibiotics in the cirrhotic patient? The evidence base. Ann Gastroenterol. 2013; 26(2): 128–131. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3959942
  5. Benavides J, Fernandez N, Colombato L, et al. Further evidence linking bacterial infection and upper G.I. bleeding in cirrhosis. Results from a large multicentric prospective survey in Argentina. J Hepatol 2003;38 (suppl 2):A176. http://www.journal-of-hepatology.eu/article/S0168-8278(03)80592-5/abstract


Don’t forget to sign up under menu to get future pearls right into your mailbox!

Why are patients with cirrhosis and upper gastrointestinal bleed routinely treated with antibiotics?