Is my hospitalized patient with possible pneumonia at risk of Clostridium difficile-associated disease after only 1-3 days of empiric antibiotic therapy?

Yes! Even relatively brief duration of antibiotic therapy may increase the risk of Clostridium difficile-associated disease (CDAD) in a susceptible host.
In a study of hospitalized patients with new-onset diarrhea, prior exposure to levofloxacin and cefazolin was significantly associated with CDAD with the median duration of therapy for levofloxacin of 3 days (range 1-18 days), and for cefazolin 2 days (range 1-3 days) (1). Similarly, a study in hospitalized patients during a CDAD epidemic found a significantly increased risk of CDAD among patients who received fluoroquinolones for only 1-3 days (hazard ratio 2.4) with a 95% confidence interval (1.6-3.6) that overlapped 4-6 days and ≥ 7 days treatment groups (2). Yet another study found no significant difference in the risk of CDAD between those on antibiotic for < 4 days vs 4-7 days of antibiotics (3). CDAD following a single dose of cefazolin has also been reported (4).
Of interest, laboratory studies in mice have shown a profound alteration of intestinal microbiota following a single dose of clindamycin, resulting in increased susceptibility to C. difficile colitis (5).
So although duration of antibiotic therapy is an important factor in CDAD (3, 6) and we should minimize the duration of antibiotic therapy whenever possible, not starting antibiotics in the absence of clear indication is even better!

References
1. Manian FA, Aradhyula S, Greisnauer S, et al. Is it Clostridium difficile infection or something else? A case-control study of 352 hospitalized patients with new-onset diarrhea. S Med J 2007;100:782-786. https://www.ncbi.nlm.nih.gov/pubmed/17713303
2. Pepin J, Saheb N, Coulombe MA, et al. Emergence of fluoroquinolones as the predominant risk factor for Clostridium difficile-associated diarrhea: a cohort study during an epidemic in Quebec. Clin Infect Dis 2005;41:1254-60. https://www.ncbi.nlm.nih.gov/pubmed/16206099
3. Stevens V, Dumyati G, Fine LS, et al. Cumulative antibiotic exposures over time and the risk of Clostridium difficile infection. Clin Infect Dis 2011;53:42-48. https://www.ncbi.nlm.nih.gov/pubmed/21653301
4. Mcneeley SG, Anderson GD, Sibai BM. Clostridium difficile colitis associated with single dose cefazolin prophylaxis. Ob Gynecol 1985;66:737-8. https://www.ncbi.nlm.nih.gov/pubmed/4058831
5. Buffie CG, Jarchum I, Equinda M, et al. Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis. Infect Immun 2011;80: 62-73. https://www.ncbi.nlm.nih.gov/pubmed/22006564
6. Chalmers JD, Akram AR, Sinanayagam A, et al. Risk factors for Clostridium difficile infection in hospitalized patients with community-acquired pneumonia. J Infect 2016;73:45-53. https://www.ncbi.nlm.nih.gov/pubmed/27105657

Disclosure: The contributor of this post was a coinvestigator of a cited study (ref. 1).

If you liked this post, sign up under menu and get future pearls straight into your mailbox!

Is my hospitalized patient with possible pneumonia at risk of Clostridium difficile-associated disease after only 1-3 days of empiric antibiotic therapy?

Should Aerococcus urinae growth from the urine of my elderly patient be considered a pathogen?

Although for many years Aerococcus urinae was considered a urinary contaminant, increasingly it is recognized as an emerging pathogen capable of causing not only urinary tract infection (UTI) but also secondary bacteremia and endocarditis, among others.1   

The proportion of patients with aerococcal bacteriuria with symptoms suggestive of UTI ranges from 55-98%.1 So A. urinae can no longer be assumed to be a contaminant, particularly in the presence of symptoms suggestive of UTI.

A. urinae UTI often affects the elderly (median age 79 y) and those with pre-existing urinary tract pathologies, such as prostatic hyperplasia, urethral stricture, renal calculi, and prior urinary tract surgery.2,3 Many patients also have underlying comorbidities such as diabetes, heart disease, dementia, and chronic renal failure.3

One clue to the presence of A. urinae in the urine is its particularly pungent odor reminiscent of that of patients with trimethylaminuria (fish odor syndrome).4

Once you decide you should treat A. urinae, keep in mind that it is NOT predictably susceptible to trimethoprim-sulfamethoxazole, fluoroquinolones, or fosfomycin!  Instead, consider penicillin, ampicillin, cephalosporin, or nitrofurantoin to which most strains are susceptible.5,6.

 

References

  1. Rasmussen M. Aerococcus: an increasingly acknowledged human pathogen. Clin Microbiol Infect 2016;22:22-27. https://www.ncbi.nlm.nih.gov/pubmed/26454061
  2. Tathireddy H, Settypalli S, Farrell JJ. A rare case of aerococcus urinae infective endocarditis. J Community Hosp Intern Med Perspectives 2017; 7:126-129. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5473194/
  3. Higgins A, Garg T. Aerococcus urinae: An emerging cause of urinary tract infection in older adults with multimordidity and urologic cancer. Urology Case Reports 2017;24-25. https://www.ncbi.nlm.nih.gov/pubmed/28435789
  4. Lenherr N, Berndt A, Ritz N, et al. Aerococcus urinae: a possible reason for malodorus urine in otherwise healthy children. Eur J Pediatr. 2014;173:1115-7 https://www.ncbi.nlm.nih.gov/pubmed/24913181
  5. Christensen JJ, Nielsen XC. Aerococcus urinae. Antimicrobe @ http://www.antimicrobe.orgb75.asp , accessed June 14, 2018.
  6. Dimitriadi D, Charitidou C, Pittaras T, et al. A case of urinary tract infection caused by Aerococcus urinae. J Bacteriol Mycol 2016; 2: 00041. https://pdfs.semanticscholar.org/a1cf/048d8444ce054ca9a332f7c2b4a218325ff6.pdf

 

Should Aerococcus urinae growth from the urine of my elderly patient be considered a pathogen?

When should I pay attention to the minimum inhibitory concentration (MIC) of an antibiotic despite the lab reporting it to be in the “Susceptible” range?

In most situations, you will most likely choose an antibiotic based on the laboratory reporting of “Susceptible” (vs “Resistant”), not the actual MIC value of the drug and that’s fine.  

However, there may be a few instances when you may need to pay more attention to the actual MICs. Many experts recommend caution when “high” MICs within a susceptible range are observed in the following situations:   

  1. Vancomycin MIC >1 ug/ml in Staphylococcal aureus (methicillin-sensitive or –resistant) infections because of its possible association with clinical failure and, at times, increased mortality1,2.
  2. Ciprofloxacin or levofloxacin MIC>0.25 ug/ml in bacteremia caused by Gram-negative bacilli (including Enterobacteriacae as well as Pseudomonas aeruginosa) because of its association with an adverse outcome (eg, longer average hospital stay post-culture and duration of infection) but not necessarily mortality3-5.
  3. Levofloxacin MIC ≥ 1.0 ug/ml in Streptococcus pneumoniae infections, because of its association with an adverse clinical outcome based on drug pharmacodynamics and anecdotal reports of treatment failure6,7.

 

References

  1. Jacob JT, DiazGranados CA. High vancomycin minimum inhibitory concentration and clinical outomces in adults with methicillin-resistant Staphylococcus aureus infections: a meta-analysis. Int J Infect Dis 2013;17:e93-e100.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3780595/
  2. Kalil AC, Van Schooneveld TC, Fey PD, et al. Association between vancomycin minimum inhibitory concentration and mortality among patients with Staphylococcus aureus bloodstream infections: A systematic review and meta-analysis. JAMA 2014;312:1552-1564. https://www.ncbi.nlm.nih.gov/pubmed/25321910
  3. DeFife R, Scheetz MH, Feinglass J, et al. Effect of differences in MIC values on clinical outcomes in patients with bloodstream infections caused by Gram-negative organisms treated with levofloxacin. Antimicrob Agents Chemother 2009;53:1074-79. http://aac.asm.org/content/53/3/1074.full
  4. Falagas ME, Tansarli GS, Rafailidis PI, et al. Impact of antibiotic MIC on infection outcome in patients with susceptible Gram-negative bacteria a systematic review and meta-analysis. Antimicrob Agents Chemother 2012;56:4214-22. https://www.ncbi.nlm.nih.gov/pubmed/22615292
  5. Zelenitsky SA, Harding GKM, Sun S, et al. Treatment and outcome of Pseudomonas aeruginosa bacteremia: an antibiotic pharmacodynamics analysis. J Antimicrob Chemother 2003;52:668-674. https://www.ncbi.nlm.nih.gov/pubmed/12951354
  6. Davidson R, Cavalcanti R, Brunton JL, et al. Resistance to levofloxacin and failure of treatment of pneumococcal pneumonia. N Engl J Med 2002;346:. 2002;346:747-50. https://www.ncbi.nlm.nih.gov/pubmed/11882730
  7. De Cueto M, Rodriguez JM, Soriano MJ, et al. Fatal levofloxacin failure in treatment of a bacteremic patient infected with Streptococcus pneumoniae with a preexisting parC mutation. J Clin Microbiol 2008;46:1558-1560.  http://jcm.asm.org/content/46/4/1558.full

Contributed in part by Nick Van Hise, Pharm.D., BCPS, Infectious Diseases Clinical Pharmacist, Edward-Elmhurst Hospitals, Naperville, Illinois.

If you liked this post, sign up under MENU and get future pearls straight into your mailbox!

When should I pay attention to the minimum inhibitory concentration (MIC) of an antibiotic despite the lab reporting it to be in the “Susceptible” range?

What is the mechanism of fluoroquinolone(FQ)-induced tendonopathy?

An uncommon but serious side effect of FQs (e.g. ciprofloxacin, levofloxacin, and moxifloxacin) is Achilles tendon rupture.   A putative mechanism for this adverse effect is inhibition of host mitochondrial components (1). Recall that mitochondria, the ATP-generating machine within our cells, are thought to be archaic bacterial ancestors that have co-evolved with us. Quinolones are inhibitors of bacterial gyrases and topoisomerases and also appear to be associated with DNA degradation of the mitochondria in some mammalian cells. In vitro, FQs appear to have a tropism for mitochondria in tenocytes, chondrocytes, and osteoblasts.   Thus, it is possible that at least in some patients (e.g. those ≥60 years of age, on higher doses of corticosteroids, or with several renal disease or other idiosyncratic factors) the mitochondrial damage is sufficient to cause serious injury to the Achilles tendon (2).

1. Barnhill AE, Brewer MT, Carlson SA. Adverse effects of antimicrobials via predictable or idiosyncratic inhibition of host mitochondrial components. Antimicrob Agents Chemother 2012;56:4046-4051.

2. Shakibaei M, Stahlmann R. Ultrastructure of Achilles tendon from rats after treatment with fleroxacin. Arch Toxicol 2001;75:97-102.

What is the mechanism of fluoroquinolone(FQ)-induced tendonopathy?