What’s the connection between elevated troponins and Covid-19?

Elevated cardiac troponins or myocardial injury (defined as troponin levels above the 99th percentile upper reference range) are not uncommon in Covid-19, having been reported in ~10-30% of hospitalized patient and usually observed in the absence of acute coronary syndrome (ACS) (1-4).

 
Elevated troponins have been associated with increased risk of in-hospital mortality in Covid-19. The prevalence of elevated troponins among patients who died was 76% compared to 10% among survivors in 1 Chinese study (3). Another study from China found increasing troponin levels over a 22 day period among those who died while troponin levels remained low in those who survived (5).

 
Risk factors for elevated troponins in Covid-19 include older age, cardiovascular comorbidities (eg, hypertension, coronary heart disease, heart failure), diabetes, chronic obstructive pulmonary disease, chronic renal failure, and the presence of a high inflammatory state, as indicated by elevated inflammatory markers such as C-reactive protein (CRP) (3).

 
Several mechanisms have been proposed to explain elevated troponins in Covid-19, including cytokine-induced myocardial injury, microangiopathy due to prothrombotic state, myocardial infarction (type I due to plaque rupture or type II due to oxygen supply/demand imbalance), and myocarditis either due to direct viral invasion or indirectly through immune-mediated mechanisms (1,2).

 
Patients with Covid-19 and modest troponin elevation with rapid fall in the absence of signs or symptoms of ACS, may have type II myocardial infarction due to demand ischemia, particularly in the setting of coronary disease. In contrast, more protracted elevation of troponins associated with high inflammatory markers such as CRP is suggestive of hyperinflammatory myocardial injury (1).

 

It will be interesting to see if trials of anti-inflammatory agents, such as colchicine and anti-interleukin-I, will have an impact on the troponin levels in Covid-19 patients (1).

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References
1. Cremer PC. SARS-CoV-2 and myocardial injury: few answers, many questions. Clev Clin J Med. Posted April 8, 2020. Doi:10.3949/ccjm.87a.ccc001 https://www.ccjm.org/content/early/2020/05/12/ccjm.87a.ccc001
2. Tersalvi G, Vicenzi M, Calabretta D, et al. Elevated troponin in patients with coronavirus disease 2019:possible mechanisms. J Card Failure 2020; https://pubmed.ncbi.nlm.nih.gov/32315733/
3. Shi S, Qin M, Cai Y, et al. Characteristics and clinical significance of myocardial injury in patients with severe coronavirus disease 2019. Eur Heart J 2020. https://pubmed.ncbi.nlm.nih.gov/32391877/
4. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA 2020;323:2052-59. https://jamanetwork.com/journals/jama/fullarticle/2765184
5. Zhou F, YU T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395:1054-62. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)30566-3/fulltext

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

 

What’s the connection between elevated troponins and Covid-19?

Key clinical pearls in the medical management of hospitalized patients with coronavirus (Covid-19) infection

First, a shout-out to dedicated healthcare workers everywhere who have selflessly given of themselves to care for the sick during this pandemic. Thank you! Together, I know we will get through it!

Although our understanding of Covid-19 infection is far from complete, in the spirit of clarity and brevity of my posts on Pearls4Peers, here are some key points I have gleaned from review of existing literature and the CDC that may be useful as we care for our hospitalized patients with suspected or confirmed Covid-19 infection.

  • Isolation precautions.1 Per CDC, follow a combination of airborne (particularly when aerosol generating procedures is anticipated, including nebulizer treatment) and contact precaution protocols. Routinely use masks or respirators, such as N-95s (subject to local availability and policy) and eye protection. Don gowns (subject to local availability and policy) and gloves and adhere to strict hand hygiene practices.

 

  • Diagnostic tests1-9
    • Laboratory tests. Routine admission labs include CBC, electrolytes, coagulation panels and liver and renal tests. Other frequently reported labs include LDH, C-reactive protein (CRP) and procalcitonin. Testing for high sensitivity troponin I has also been performed in some patients, presumably due to concern over ischemic cardiac injury or myocarditis.2 Check other labs as clinically indicated.
    • Chest radiograph/CT chest. One or both have been obtained in virtually all reported cases with CT having higher sensitivity for detection of lung abnormalities.
    • EKG. Frequency of checking EKGs not reported in many published reports thought 1 study reported “acute cardiac injury” in some patients, based in part on EKG findings.4 Suspect we will be checking EKGs in many patients, particularly those who are older or are at risk of heart disease.
    • Point-of-care ultrasound (POCUS). This relatively new technology appears promising in Covid-19 infections, including in rapid assessment of the severity of pneumonia or ARDS at presentation and tracking the evolution of the disease. 9 Don’t forget to disinfect the probe between uses!

 

  • Treatment 1-8
    • Specific therapies are not currently available for treatment of Covid-19 infections, but studies are underway.
    • Supportive care includes IV fluids, 02 supplementation and nutrition, as needed. Plenty of emotional support for patients and their families will likely be needed during these times.
    • Antibiotics have been used in the majority of reported cases, either on admission or during hospitalization when superimposed bacterial pneumonia or sepsis could not be excluded.
      • Prescribe antibiotics against common community-acquired pneumonia (CAP) pathogens, including those associated with post-viral/influenza pneumonia such as Streptococcus pneumoniae (eg, ceftriaxone), and Staphylococcus aureus (eg, vancomycin or linezolid if MRSA is suspected) when concurrent CAP is suspected.
      • Prescribe antibiotics against common hospital-acquired pneumonia (HAP) (eg, vancomycin plus cefepime) when HAP is suspected.
    • Corticosteroids should be avoided because of the potential for prolonging viral replication, unless indicated for other reasons such as COPD exacerbation or septic shock. 1
    • Monitor for deterioration in clinical status even when your hospitalized patient has relatively minor symptoms. This is because progression to lower respiratory tract disease due to Covid-19 often develops during the 2nd week of illness (average 9 days).
    • ICU transfer may be necessary in up to 30% of hospitalized patients due to complications such as ARDS, secondary infections, and multi-organ failure.

 

Again, thank you for caring for the sick and be safe! Feel free to leave comments or questions.

 

 Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 

References

  1. CDC. Interim clinical guidance for management of patients with confirmed coronavirus disease (COVID-19). https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-patients.html
  2. Ruan Q, Yang K, Wang W, Jiang L, et al. Clinical predictors of mortality due to COVID-19 based on analysis of data of 150 patients with Wuhan, China. Intensive Care Med 2020. https://link.springer.com/article/10.1007/s00134-020-05991-x
  3. Holshue ML, BeBohlt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020;382:929-36. https://www.nejm.org/doi/full/10.1056/NEJMoa2001191
  4. Huang C, Wang Y, Li Xingwang, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497-506. https://www.thelancet.com/pdfs/journals/lancet/PIIS0140-6736(20)30183-5.pdf
  5. Young BE, Ong SWX, Kalimuddin S, et al. Epideomiologic features and clinical course of patients infected with SARS-CoV-2 Singapore. JAMA, March 3, 2020. Doi.10.1001/jama.2020.3204 https://www.ncbi.nlm.nih.gov/pubmed/32125362
  6. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical chacteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020;395:507-13. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)30211-7/fulltext
  7. Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl Med 2020, Feb 28, 2020. https://www.nejm.org/doi/full/10.1056/NEJMoa2002032
  8. Zhang J, Zhou L, Yang Y, et al. Therapeutic and triage strategies for 2019 novel coronavirus disease in fever clinics. Lancet 2020;8: e11-e12. https://www.thelancet.com/journals/lanres/article/PIIS2213-2600(20)30071-0/fulltext 9.
  9. Peng QY, Wang XT, Zhang LN, et al. Findings of lung ultrasonography of novel corona virus pneumonia during the 2019-2020 epidemic. Intensive Care Med 2020. https://doi.org/10.1007/s00134-020-05996-
Key clinical pearls in the medical management of hospitalized patients with coronavirus (Covid-19) infection

My patient with inferior myocardial infarction with Q-waves 2 years ago now has no evidence of Q waves on his EKG. Can Q-waves from myocardial infarction really regress over time?

Short answer: Yes! Q-waves may regress following transmural myocardial infarction (ATMI) and in fact this phenomenon may not be as unusual as once thought, occurring in 7-15% of patients (1,2).

 
A prospective study involving patients with ATMI evaluated by coronary angiography and followed for an average of 65 months found an 11% rate of loss of Q-waves over an average of 14 months after ATMI. Factors associated with loss of Q-waves included lower peak creatine kinase values, lower left ventricular end-diastolic pressures, higher ejection fractions, fewer ventricular aneurysms and lower rate of congestive heart failure, all leading to the authors’ conclusion that Q-wave loss may be related to a smaller infarct size (1).

 
Similar findings were reported from patients enrolled in the Aspirin Myocardial Infarction Study with a loss of a previously documented diagnostic Q-wave confirmed in 14.2% of participants over an average of 38 months. Mortality among patients who lost Q-waves was not significantly different than among those with persistent Q-waves in a single infarct location (2).

 
These observations suggest that Q-waves in the setting of ATMI may not necessarily be pathognomonic of myocardial necrosis and, at least in some instances, may be due to tissue ischemia, edema and inflammation causing reversible myocardial and electrical stunning (3). Of interest, reversible Q-waves have also been reported in acute myocarditis (4).

Bonus Pearl: Did you know that the EKG waves P and Q were likely named by Einthoven, the inventor of EKG, after the designation of the same letters by Descartes, the father of analytical geometry, in describing refraction points? (5). 

 

If you liked this post, sign up under MENU and catch future fresh pearls straight into your mailbox!

 

 

References
1. Coll S, Betriu A, De Flores T, et al. Significance of Q-wave regression after transmural acute myocardial infarction. Am J Cardiol 1988;61:739-42.
2. Wasserman AG, Bren GB, Ross AM, et al. Prognostic implications of diagnostic Q waves after myocardial infarction. Circulation 1982;65:1451-55.
3. Barold SS, Falkoff MD, Ong LS, et al. Significance of transient electrocardiographic Q waves in coronary artery disease. Cardiol Clin 1987;5:367-80.
4. Dalzell JR, Jackson CE, Gardner RS. Masquerade: Fulminant viral myocarditis mimicking a Q-wave anterolateral myocardial infarction. Am J Med 2009. Doi:10.1016/j.amjmed.2009.01.015.

5. Hurst, JW.  Naming of the waves in the ECG, with a brief account of their genesis. Circulation 1998;98:1937-42. 

 

My patient with inferior myocardial infarction with Q-waves 2 years ago now has no evidence of Q waves on his EKG. Can Q-waves from myocardial infarction really regress over time?