Is there an association between Covid-19 and subsequent development of hypertension?

Although far from definite, emerging evidence suggests that adults with recently diagnosed Covid-19 are at increased risk of newly-diagnosed hypertension following the acute infection.1-4

A retrospective cohort study involving a large national healthcare data base of the Department of Veterans Affairs found that, at a median follow-up of 126 days, Covid-19 survivors had an excess burden of newly-diagnosed hypertension (15/1000 patients) and were at higher risk of initiation of antihypertensive drugs compared to controls.2

Another retrospective cohort study involving over 80,000 adults 65 years or older (median follow-up 56 days) found an increased risk of newly-diagnosed hypertension (O.R. 4.4; 95% C.I. 2.27-6.37) in the Covid-19 group. 3  Even in a younger population (18-65 years of age), the same investigators found a significant increase (81%; 95% C.I. 10-196%) in the risk of newly diagnosed hypertension in the Covid-19 group compared to that of the control cohort. 4  

Despite the inherent limitations in these retrospective studies, a cause-and-effect relationship between Covid-19 and subsequent diagnosis of hypertension is plausible given the known affinity of SARS-CoV-2 for ACE2 receptors and endothelial cells. 5   Of interest, hyperreninemia associated with reduced glomerular filtration rate has been reported in some patients with Covid-19 requiring prolonged intensive care. 6

Bonus Pearl: Did you know that Covid-19 survivors have also been reported to have an increased risk of stroke, transient ischemic attack, ischemic heart disease, pericarditis, myocarditis, heart failure, dysrhythmia, and thromboembolic disease, independently of pre-existing hypertension and other cardiovascular risk factors? 7

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 

References

  1. Shibata S, Kobayashi K, Tanaka M, et al. Covid-19 pandemic and hypertension: an updated report from the Japanese Society of Hypertension project team on Covid-19. Hypertens Res 2022 Dec 23:1-12. COVID-19 pandemic and hypertension: an updated report from the Japanese Society of Hypertension project team on COVID-19 – PMC (nih.gov)
  2. Al-Aly Z, Xie Y, Bowe B. High-dimensional characterization of post-acute sequelae of Covid-19. Nature 2021;594:259-64. High-dimensional characterization of post-acute sequelae of COVID-19 – PubMed (nih.gov)
  3. Daugherty SE, Guo Y, Health K, et al. Risk of clinical sequelae after the acute phase of SARS-CoV-2 infection: retrospective cohort study. BMJ 2021;373:n1098. Risk of clinical sequelae after the acute phase of SARS-CoV-2 infection: retrospective cohort study | The BMJ
  4. Guney C, Akar F. Epithelial and endothelial expressions of ACE2:SARS-CoV-2 Entry Routes.  J Pharm Pharm Sci 2021;24:84-98 Epithelial and Endothelial Expressions of ACE2: SARS-CoV-2 Entry Routes – PubMed (nih.gov)
  5. Cohen K, Ren S, Health K, et al. Risk of persistent and new clinical sequelae among adults aged 65 years and older during the post-acute phase of SARS-CoV-2 infection: retrospective cohort study. BBMJ 2022;376:e068414. Risk of persistent and new clinical sequelae among adults aged 65 years and older during the post-acute phase of SARS-CoV-2 infection: retrospective cohort study – PubMed (nih.gov) 
  6. Hulstom M, von Seth M, Frithiof R. Hyperreninemia and low total body water may contribute to acute kidney injury in coronavirus disease 2019 patients in intensive care. J Hypertens 2020 May 28. Hyperreninemia and low total body water may contribute to acute kidney injury in corona virus disease 2019 patients in intensive care – PMC (nih.gov)
  7. Xie Y, Xu E, Bowe B, et al. Long-term cardiovascular outcomes of Covid-19. Nat med 2022;28:583-90. Long-term cardiovascular outcomes of COVID-19 – PMC (nih.gov)

 

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Mercy Hospital-St. Louis, Massachusetts General Hospital, Harvard Catalyst, Harvard University, their affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

Is there an association between Covid-19 and subsequent development of hypertension?

Why is my relatively healthy elderly patient so prone to hyperkalemia?

Hyporeninemic hypoaldosteronism (HH)—without impairment of cortisol synthesis— is associated with hyperkalemic (type IV) renal tubular acidosis (RTA) and is not uncommon among older patients despite glomerular filtration rates (GFRs) >20 ml/min, and absence of diabetes mellitus or chronic tubulointerstitial disease (1-7).  

Hyperkalemia due to HH in the elderly should come as no surprise because the renin-angiotensin-aldosterone system (RAAS) function declines with age, reaching its lowest level by age 60. 1-4   In fact, older people have comparatively lower mean levels of plasma renin and aldosterone at baseline and have an impaired ability to mount appropriate responses to RAAS stimuli, such as upright posture, volume depletion, catecholamines, or potassium administration (3-5).

The impaired RAAS capacity in the elderly often becomes more obvious when they are prescribed medications that further suppress RAAS (3). These include angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, beta-blockers, calcium-channel blockers, nonsteroidal anti-inflammatory agents and heparin (3,7). 

Drugs that increase aldosterone resistance, including potassium-sparing diuretics (eg, spironolactone, amiloride, triamterene, eplerenone) and certain antibiotics (eg, trimethoprim, pentamidine) may also aggravate hyperkalemia associated with HH (7). 

A variety of mechanisms leading to HH with aging have been proposed. These include impaired conversion of prorenin to renin, prostaglandin deficiency, sympathetic nervous system dysfunction and increased plasma levels of atrial natriuretic factors as found in congestive heart failure (1,7). 

Bonus pearl: Did you know that the first case of “pure hypoaldosteronism” was described in 1957 in a 71 year old non-diabetic patient with hyperkalemia in the setting of congestive heart failure? (8)

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. Bauer JH. Age-related changes in the renin-aldosterone system. Physiological effects and clinical implications. Drugs & Aging 1993;3:238-45. https://www.ncbi.nlm.nih.gov/pubmed/8324299
  2. Musso CG, Jauregui JR. Renin-angiotensin-aldosterone system and the aging kidney. Expert Rev Endocrinol Metab 2014;9:543-46. https://www.tandfonline.com/doi/full/10.1586/17446651.2014.956723
  3. Yoon HE, Choi BS. The renin-angiotensin system and aging in the kidney. Korean J Intern Med 2014;29:291-95. https://www.researchgate.net/publication/262530577_The_renin-angiotensin_system_and_aging_in_the_kidney
  4. Nadler JL, Lee FO, Hsueh W, et al. Evidence of prostacyclin deficiency in the syndrome of hyporeninemic hypoaldosteronism. N Engl J Med 1986;314:1015-20. https://www.ncbi.nlm.nih.gov/pubmed/3515183
  5. Williams GH. Hyporeninemic hypoaldosteronism. N Engl J Med 1986;314:1041-42. https://www.ncbi.nlm.nih.gov/pubmed/3515186
  6.  Block BL, Bernard S, Schwartzstein RM. Hypo-hypo: a complex metabolic disorder. Ann Am Thorac Soc 2016;13:127-133. https://www.ncbi.nlm.nih.gov/pubmed/26730868
  7. Michelis MF. Hyperkalemia in the elderly. Am J Kid Dis 1990;16:296-99.https://www.ajkd.org/article/S0272-6386(12)80005-9/pdf
  8. Hudson JB, Chobanian AV, Relman AS. Hypoaldosteronism. A clinical study of a patient with an isolated adrenal mineralocorticoid deficiency, resulting in hyperkaliemia and Stokes-Adams attack. N Engl J Med 1957;257:529-36. https://www.ncbi.nlm.nih.gov/pubmed/13464977

 

Why is my relatively healthy elderly patient so prone to hyperkalemia?

Why is my patient with diabetic ketoacidosis (DKA) and hypovolemia hypertensive?

Although we may expect patients with DKA to present with hypotension due to hypovolemia, many patients with DKA may actually be hypertensive. This finding is particularly intriguing because hyperinsulinemia, not insulinopenia as found in DKA, has been associated with hypertension. 1,2

Though not proven, potential explanations for hypertension in DKA include elevated serum levels of catecholamines, pro-inflammatory cytokines, renin, angiotension II and aldosterone.3-5 Hyperosmolality may also lead to the release of antidiuretic hormone (ADH) which increases blood pressure via V2 receptors.  Another possibility is that the high insulin levels associated with the treatment of DKA suppress the catecholamine-stimulated production of vasodilative eicosanoids (eg, prostaglandins) by adipose tissue. 1 It’s possible that in any given patient, 1 or more of these mechanisms may be enough to override the potential hypotensive effect of insulin deficiency in DKA.

We should note that reports of frequent hypertension in DKA have primarily involved pediatric patients. A 2011 study found that 82% of pediatric patients with DKA had hypertension during the first 6 hours of admission with no patient having hypotension.3  

On the other extreme, refractory hypotension without obvious cause (eg, sepsis, acute adrenal insufficiency, cardiogenic causes) has also been reported in DKA.5Because insulin inhibits the production of vasodilative prostaglandins (eg, PGI2 and PGE2), severe insulin deficiency in DKA can also contribute to hypotension along with volume depletion. 

Potential genetic polymorphism in the synthesis and metabolism of prostaglandins may at least partially explain the varied blood pressure response and whether a patient with DKA presents with hypertension or hypotension. 5  

The author would like to acknowledge the valuable contribution of Lloyd Axelrod MD, Massachusetts General Hospital, to this post.

If you liked this post, sign up under MENU and catch future pearls right into your inbox!

References

  1. Axelrod L. Insulin, prostaglandins, and the pathogenesis of hypertension. Diabetes 1991;40:1223-1227. https://diabetes.diabetesjournals.org/content/40/10/1223 
  2. Chatzipantelli K, Head C, Megerman J, et al. The relationship between plasma insulin level, prostaglandin productin by adipose tissue and blood pressure in normal rats and rats with diabetes mellitus and diabetic ketoacidosis. Metabolism 1996;45:691-98. https://www.sciencedirect.com/science/article/abs/pii/S002604959690133X 
  3. Deeter KH, Roberts JS, Bradford H, et al. Hypertension despite dehydration during severe pediatric diabetic ketoacidosis. Pediatr Diabetes 2011;12:295-301. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-5448.2010.00695.x 
  4. Ferris JB, O’Hare JA, Kelleher CM, et al. Diabetic control and the renin-angiotensin system, catecholamines and blood pressure. Hypertension 1985 7(Suppl II):II-58-II-63. https://www.ahajournals.org/doi/abs/10.1161/01.HYP.7.6_Pt_2.II58  
  5. Singh D, Cantu M, Marx MHM, et al. Diabetic ketoacidosis and fluid refractory hypotension. Clin Pediatrics 2016;55:182-84. https://journals.sagepub.com/doi/abs/10.1177/0009922815584549?journalCode=cpja 

 

Why is my patient with diabetic ketoacidosis (DKA) and hypovolemia hypertensive?

How does excess licorice consumption cause hypertension and hypokalemia?

The active ingredient of licorice, glycyrrhizic acid or glycyrrhizin, is first converted to glycyrrhetinic acid (GRA) in the bowel which is then absorbed. Once in the circulation, GRA inhibits activation of 11 β-hydroxysteroid dehydrogenase 2 (11 β-HSD2), an enzyme in renal tissue that converts active cortisol to inactive cortisone. Without the full action of this enzyme, proper sodium and potassium homeostasis would be difficult because cortisol is just as effective in stimulating mineralocorticoid receptors as aldosterone but with 100-1000 times higher concentration than that of aldosterone! 1-3

Other ways that GRA may cause hypertension and hypokalemia include inhibition of 5 β-reductase in the liver, an enzyme that metabolizes aldosterone and direct stimulation of mineralocorticoid receptors, though overall these mechanisms may not be as important as the effect of GRA on cortisol metabolism in renal tissue.1,2

Besides causing fluid retention, licorice ingestion has also been found to increase systemic vascular resistance possibly by increasing vascular tone and remodeling of the vascular wall, potentiating the vasoconstrictor actions of angiotensin II and catecholamines in smooth muscle, and suppressing vasodilatory systems, including endothelial nitric oxide synthase and prostacyclin synthesis.

It’s no wonder that the FDA issued a statement in 2017: “If you’re 40 or older, eating 2 ounces of black licorice a day for a day for at least two weeks could land you in the hospital with an irregular heart rhythm or arrhythmia.” 5

Bonus Pearl: Did you know that as early as 1951, extract of licorice was reported for treatment of Addison’s disease, a combination of licorice and soy sauce has been reported to be “life-saving” in a patient with Addison’s disease (2007), and GRA food supplementation may lower serum potassium in chronic hemodialysis patients (2009)? 6,7

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. Sontia B, Mooney J, Gaudet L, et al. Pseudohyperaldosteronism, liquorice and hypertension. J Clin Hypertens (Greenwich) 2008; 10:153-57. https://www.ncbi.nlm.nih.gov/pubmed/18256580
  2. Omar HR, Komarova I, El-Ghonemi M, et al. Licorice abuse: time to send a warning message. The Adv Endocrinol Metab 2012;3:125-138. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3498851/
  3. Penninkilampi R, Eslick EM, Eslick GD. The association between consistent licorice ingestion, hypertension and hypokalaemia: as systematic review and meta-analysis. Journal of Human Hypertension 2017;31:699-707. https://www.ncbi.nlm.nih.gov/pubmed/28660884
  4. Black licorice: trik or treat? https://www.fda.gov/ForConsumers/ConsumerUpdates/ucm 277152.htm
  5. Hautaniemi EJ, Tahvanainen AM, Koskela JK, et al. Voluntary liquorice ingestion increases blood pressure via increased volume load, elevated peripheral arterial resistance, and decreased aortic compliance. Sci Rep 2017;7:10947. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5591274/
  6. Groen J, Pelser H, Willebrands AF, et al. Extract of licorice for the treatment of Addison’s disease. N Engl J Med 1951;244:471-75. https://www.ncbi.nlm.nih.gov/pubmed/14806786
  7. Cooper H, Bhattacharya B, Verma V, et al. Liquorice and soy sauce, a life-saving concoction in a patient with Addison’s disease. Ann Clin Biochem 2007;44:397-99. https://www.ncbi.nlm.nih.gov/pubmed/17594790
  8. Farese S, Kruse Anja, Pasch A, et al. Glycyrrhetinic acid food supplementation lowers serum potassium concentration in chronic hemodialysis patients. Kidney International 2009;76:877-84. https://www.ncbi.nlm.nih.gov/pubmed/19641483

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Mercy Hospital-St. Louis or its affiliate healthcare centers, Mass General Hospital, Harvard Medical School or its affiliated institutions. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

How does excess licorice consumption cause hypertension and hypokalemia?

Should my patient with compensated heart failure be placed on a sodium-restricted diet?

Although sodium restriction is routinely recommended for patients with heart failure (HF), the data is often conflicting with a number of studies even suggesting that it may be harmful in some patients.

Two randomized trials (by the same group) involving patients with compensated HF recently discharged from the hospital reported that “less restricted” sodium diet (2.8 gm/d) along with fluid restriction (1 L/day) and high dose furosemide (at least 125-250 mg furosemide twice daily) was associated with less rates of readmissions and improved levels of brain natriuretic peptide, aldosterone and plasma renin activity compared to patients on more restricted sodium diet (1.8 gm/d). 1,2

Analysis of data from the multihospital HF Adherence and Retention Trial enrolling New York Heart Association functional class II/III HF patients found that sodium restriction (<2.5 gm/d) was associated with significantly higher risk of death or HF hospitalization but only in patients not on an angiotensin converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB). 3

In normal subjects who are not sodium deprived, excess sodium intake has been shown to cause expansion of intravascular volume without increasing total body water. 4 Thus, sodium restriction combined with diuretics may reduce intravascular volume and renal perfusion, further stimulating the renin-angiotensin-aldosterone system and fluid retention. 5

Bonus Pearl: Did you know that the 2013 American College of Cardiology Foundation/American Heart Association guidelines downgraded the recommendation for sodium restriction to Class IIa (reasonable) with Level of Evidence:C? 6

References

  1. Paterna S, Gaspare P, Fasullo S, et al. Normal-sodium diet compared with low-sodium diet in compensated congestive heart failure: is sodium an old enemy or a new friend? Clin Sci 2008;114:221-230. https://www.ncbi.nlm.nih.gov/pubmed/17688420
  2. Paterna S, Parrinello G, Cannizzaro S, et al. Medium term effects of different dosage of diuretic, sodium, and fluid administration on neurohormonal and clinical outcome in patients with recently compensated heart failure. Am J Cardiol 2009;103:93-102. https://www.ncbi.nlm.nih.gov/pubmed/19101237
  3. Doukky R, Avery E, Mangla A, et al.Impact of dietary sodium restriction on heart failure outcomes. J Am Coll Cariol HF 2016;4:24-35. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4705447/
  4. Heer M, Baisch F, Kropp J et al. High dietary sodium chloride consumption may not induce body fluid retention in humans. Am J Physiol Renal Physiol 2000;278:F585-F595. https://www.ncbi.nlm.nih.gov/pubmed/10751219
  5. Rothberg MB, Sivalingam SK. The new heart failure diet: less salt restriction, more micronutrients. J Gen Intern Med 25;1136-7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2955483/
  6. Yancy CW, Jessup M, Bozkurt B, et al. 2013 CCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2013;62:e147-239. https://www.ncbi.nlm.nih.gov/pubmed/23741058

If you liked this pearl, sign up under menu and receive future pearls straight into your mailbox!

Should my patient with compensated heart failure be placed on a sodium-restricted diet?

The serum creatinine of my patient originally admitted for management of tense ascites is slowly rising. How concerned should I be?

Although the causes of increasing serum creatinine (SCr) in patients with cirrhosis are legion (eg, sepsis, acute tubular injury, and intravascular volume depletion due to over-diuresis, gastrointestinal bleed, or other causes), the most feared cause is often hepatorenal syndrome (HRS). HRS is a functional renal impairment that reflects the final pathophysiological stages of systemic circulatory impairment1, and significantly contributes to a worsening prognosis in patients with cirrhosis2. For example, without treatment, in patients whose SCr doubles in less than 2 weeks (type I HRS) the median survival is less than 2 weeks , while in those who develop a more gradual renal impairment (type II HRS) the median survival is 6 months3.

Physiologically, HRS is a culmination of significant vasodilation in the splanchnic arteries which, in time, leads to reduced organ perfusion due to a drop in the cardiac output. The associated increase in the activity of the renin-angiotensin-aldosterone and the sympathetic nervous systems contributes to sodium and water retention, and further exacerbates intra-renal vasoconstriction and ascites3.

The primary goal in the medical management of HRS is to increase splanchnic vascular resistance4, often by administering a combination of IV albumin, octreotide and other vasoconstricting agents (eg, midodrine, norepinephrine, or terlipressin [unavailable in US and Canada]).  Of interest, in addition to expanding the circulating plasma volume, albumin may have a vasoconstricting effect by binding to endotoxins, nitric oxide, bilirubin and fatty acids4!

 

References

  1. Arroyo V, Fernandez J, Gines P. Pathogenesis and treatment of hepatorenal syndrome. Semin Liver Dis 2008;28:81-95.
  2. Salerno F, Gerbes A, Ginès P, et al. Diagnosis, prevention and treatment of hepatorenal syndrome in cirrhosis. Gut. 2007 Sep;56(9):1310-8.
  3. Cardenas A, Gines P. A Patient with cirrhosis and increasing creatinine Level: What Is It and what to do? Clin Gatroenterol Hepatol 2009;7:1287–1291. 
  4. Baraldi O, Valentini C, Donati G, et al. Hepatorenal syndrome: Update on diagnosis and treatment. World J Nephrol. 2015;4:511-20.

Contributed by Alireza Sameie, Medical Student, Harvard Medical School

The serum creatinine of my patient originally admitted for management of tense ascites is slowly rising. How concerned should I be?