Is compression therapy for leg edema harmful in patients with congestive heart failure?

The evidence to date, albeit based on small non-randomized studies, suggests that compression therapy of lower extremities in stable patients with congestive heart failure (CHF) is not associated with clinical deterioration, while more studies are needed to evaluate its safety in advanced classes of CHF (NYHA III and IV). The theoretical concern is that by mobilizing fluid from lower extremities, compressive therapy could lead to worsening pulmonary edema in patients with less stable CHF. 1,2

A study of subjects with NYHA II CHF wearing compression stockings found a significant increase in human atrial natriuretic peptide (hANP) in patients with known heart disease but the rise was only transient and not accompanied by hemodynamic changes or clinical deterioration.3 Similar findings have been reported by studies involving patients with NYHA III and IV CHF involving compressive therapy which demonstrated no clinically significant deleterious effects. 4-5

Nevertheless, isolated reports of acute pulmonary edema following compressive therapy in the literature, 6,7 and the theoretical concern raised above have often led to recommendations against the use of CT in patients with advanced CHF. 1,2 We clearly need more studies to evaluate the risks vs benefits of CT in patients with CHF.

Bonus Pearl: Did you know that compressing the legs with pressures of 25 mm Hg and 50 mm Hg can reduce the blood volume in legs by 33% and 38%, respectively? 2

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. Urbanek T, Jusko M, Kuczmik WB. Compression therapy for leg oedema in patients with heart failure. ESC Heart Failure 2020;7:2012-20. https://onlinelibrary.wiley.com/doi/10.1002/ehf2.12848
  2. Hirsch T. Oedema drainage and cardiac insufficiency—When is there a contraindication for compression and manual lymphatic drainage? Phlebologie 2018;47:115-19. https://www.thieme-connect.de/products/ejournals/pdf/10.12687/phleb2420-3-2018.pdf?articleLanguage=en
  3. Galm O, Jansen-Genzel W, von Helden J, et al. Plasma human atrial natriuretic peptide under compression therapy in patients with chronic venous insufficiency with or without cardiac insufficiency. Vasa 1996;25:48-53. https://pubmed.ncbi.nlm.nih.gov/8851264/
  4. Wilputte F, Renard M, Venner J, et al. Hemodynamic response to multilayered bandages dressed on a lower limb of patients with heart failure. Eur J Lymphology 2005;15:1-4. https://www.researchgate.net/profile/Olivier_Leduc/publication/287602727_Hemodynamic_response_to_multilayered_bandages_dressed_on_a_lower_limb_of_patients_with_heart_failure/links/5704dff008ae44d70ee12eb5/Hemodynamic-response-to-multilayered-bandages-dressed-on-a-lower-limb-of-patients-with-heart-failure.pdf?origin=publication_detail
  5. Leduc O, Crasset V, Leleu C, et al. Impact of manual lymphatic drainage on hemodynamic parameters in patients with heart failure and lower limb edema. Lymphology 2011;44:13-20. https://pubmed.ncbi.nlm.nih.gov/21667818/
  6. Vaassen MM. Manual lymph drainage in a patient with congestive heart failure: a case study. Ostomy Wound Management 2015;61:38-45. https://www.o-wm.com/article/manual-lymph-drainage-patient-congestive-heart-failure-case-study
  7. McCardell CS, Berge KH, Ijaz M, et al. Acute pulmonary edema associated with placement of waist-high, custom fit compression stockings. Mayo Clin Proc 1999;74:478-480. https://www.mayoclinicproceedings.org/article/S0025-6196(11)64822-2/fulltext

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Mercy Hospital-St. Louis or its affiliate healthcare centers. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

Is compression therapy for leg edema harmful in patients with congestive heart failure?

My patient with jaundice complains of abdominal fullness. How useful is the history or physical exam when assessing for ascites?

Even in the age of ultrasound, history and physical exam can be useful in assessing for ascites.

History is a good place to start. Of all the questions we often ask when we suspect ascites (eg, increasing abdominal girth, weight gain and ankle swelling), lack of report of ankle swelling is probably the most helpful in excluding ascites (negative likelihood ratio [LR-], 0.1 in a study involving men), followed by no increase in abdominal girth (LR-, 0.17). Conversely, patient reported ankle swelling or increasing abdominal girth may be helpful in suspecting ascites (LR+ 4.12 and 2.8, respectively). 1

Of the various physical signs and maneuvers, absence of peripheral edema is highly associated with the lack of ascites, followed by lack of shifting dullness or fluid wave (LR-, 0.2, 0.3, 0.4, respectively). The presence of a fluid wave may be the most helpful in suspecting ascites, followed by peripheral edema, and shifting dullness (LR+ 6.0, 3.8, 2.7, respectively). 1  Relatively high sensitivities have been reported for shifting dullness (83-88%), while relatively high specificities have been reported for the fluid wave test (82-90%).2,3 An elevated INR may also improve the positive predictive value of shifting dullness and fluid waves.4

So if you don’t get a history of ankle edema and find no evidence of peripheral edema or shifting dullness on exam, the likelihood of ascites is pretty low. On the other hand, if you find a positive fluid wave, you can be pretty sure that the patient has ascites.

Of course, the actual likelihood of detecting ascites also depends on several other factors, including your pre-test probability and the volume of the ascites in the abdominal cavity, with at least ~500 ml of ascites necessary before it can be detected on exam (vs ~100 ml for ultrasound). 2,5

Liked this post? Download the app on your smart phone and sign up

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

to catch future pearls right into your inbox, all for free!

References

  1. Williams JW, Simetl DL. Does this patient have ascites? How to divine fluid in the abdomen. JAMA 1992;267: 2645-48. https://jamanetwork.com/journals/jama/fullarticle/397285
  2. Cattau EL, Benjamin SB, Knuff TE, et al The accuracy of the physical examination in the diagnosis of suspected ascites. JAMA 1982;247:1164-66. https://www.ncbi.nlm.nih.gov/pubmed/7057606
  3. Cummings S, Papadakis M, Melnick J, et al. The predictive value of physical examinations for ascites. West J Med 1985;142:633-36. https://www.ncbi.nlm.nih.gov/pubmed/3892916
  4. Fitzgerald FT. Physical diagnosis versus modern technology. A review. West J Med 1990;152:377-82. https://www.ncbi.nlm.nih.gov/pubmed/2190412
  5. CDC. Assessment for ascites. https://www.cdc.gov/dengue/training/cme/ccm/Assess%20for%20Ascites_F.pdf. Accessed November 13, 2019.
My patient with jaundice complains of abdominal fullness. How useful is the history or physical exam when assessing for ascites?

Should my patient with compensated heart failure be placed on a sodium-restricted diet?

Although sodium restriction is routinely recommended for patients with heart failure (HF), the data is often conflicting with a number of studies even suggesting that it may be harmful in some patients.

Two randomized trials (by the same group) involving patients with compensated HF recently discharged from the hospital reported that “less restricted” sodium diet (2.8 gm/d) along with fluid restriction (1 L/day) and high dose furosemide (at least 125-250 mg furosemide twice daily) was associated with less rates of readmissions and improved levels of brain natriuretic peptide, aldosterone and plasma renin activity compared to patients on more restricted sodium diet (1.8 gm/d). 1,2

Analysis of data from the multihospital HF Adherence and Retention Trial enrolling New York Heart Association functional class II/III HF patients found that sodium restriction (<2.5 gm/d) was associated with significantly higher risk of death or HF hospitalization but only in patients not on an angiotensin converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB). 3

In normal subjects who are not sodium deprived, excess sodium intake has been shown to cause expansion of intravascular volume without increasing total body water. 4 Thus, sodium restriction combined with diuretics may reduce intravascular volume and renal perfusion, further stimulating the renin-angiotensin-aldosterone system and fluid retention. 5

Bonus Pearl: Did you know that the 2013 American College of Cardiology Foundation/American Heart Association guidelines downgraded the recommendation for sodium restriction to Class IIa (reasonable) with Level of Evidence:C? 6

References

  1. Paterna S, Gaspare P, Fasullo S, et al. Normal-sodium diet compared with low-sodium diet in compensated congestive heart failure: is sodium an old enemy or a new friend? Clin Sci 2008;114:221-230. https://www.ncbi.nlm.nih.gov/pubmed/17688420
  2. Paterna S, Parrinello G, Cannizzaro S, et al. Medium term effects of different dosage of diuretic, sodium, and fluid administration on neurohormonal and clinical outcome in patients with recently compensated heart failure. Am J Cardiol 2009;103:93-102. https://www.ncbi.nlm.nih.gov/pubmed/19101237
  3. Doukky R, Avery E, Mangla A, et al.Impact of dietary sodium restriction on heart failure outcomes. J Am Coll Cariol HF 2016;4:24-35. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4705447/
  4. Heer M, Baisch F, Kropp J et al. High dietary sodium chloride consumption may not induce body fluid retention in humans. Am J Physiol Renal Physiol 2000;278:F585-F595. https://www.ncbi.nlm.nih.gov/pubmed/10751219
  5. Rothberg MB, Sivalingam SK. The new heart failure diet: less salt restriction, more micronutrients. J Gen Intern Med 25;1136-7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2955483/
  6. Yancy CW, Jessup M, Bozkurt B, et al. 2013 CCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2013;62:e147-239. https://www.ncbi.nlm.nih.gov/pubmed/23741058

If you liked this pearl, sign up under menu and receive future pearls straight into your mailbox!

Should my patient with compensated heart failure be placed on a sodium-restricted diet?

My patient on methadone complains of lower extremity edema. Could they be related?

Yes! As early as 1979, case series of patients on methadone developing peripheral edema within 3-6 months of therapy appeared in the literature1.  

Subsequent studies revealed that edema may develop from 1 week  to 6 months or longer following initiation of methadone, its severity is dose-dependent, and that it improves with reduction of methadone dose or discontinuation of therapy.  Distal extremities or the face are often involved and pulmonary edema may also occur1-3.  It is often resistant to diuretics.

The mechanism by which methadone causes peripheral edema is unclear but several hypotheses have been forwarded. The high volume of distribution and accumulation of methadone in tissues results in higher oncotic pressures in the extravascular space which in combination with reduced oncotic pressures in blood vessels due to venodilatation may lead to edema.  Other potential mechanisms include opioid-induced histamine release directly from mast cells causing venous permeability, and opioid-induced secretion of antidiuretic hormone 1-3.  

 

If you liked this post, sign up under MENU and get future pearls right into your mailbox!

References

  1. Dawson C, Paterson F, McFatter F, Buchanan D. Methadone and oedema in the palliative care setting: a case report and review of the literature. Scottish Med J 2014;59: e-11-e14. https://www.ncbi.nlm.nih.gov/pubmed/24676025.  
  2. Mahè I, Chassany O, Grenard A-S, Caulin C, Bergmann J-F. Methadone and edema: a case-report and literature review. Eur J Clin Pharmacol 2004;59:923-924. \https://www.deepdyve.com/lp/springer-journals/methadone-and-edema-a-case-report-and-literature-review-PfvnmhB1ia
  3. Kharlamb V, Kourlas H. Edema in a patient receiving methadone for chronic low back pain. Am J Health-Syst Pharm 2007;64:2557-60.https://www.ncbi.nlm.nih.gov/pubmed/18056943

 

My patient on methadone complains of lower extremity edema. Could they be related?