What’s the connection between severe hypoglycemia and hypothermia?

The association of severe hypoglycemia and low body temperatures has been well documented at least since 1960s.  Hypothermia is thought to be caused by low blood glucose in the brain (neuroglucopenia) which may serve as a protective mechanism for decreasing energy demand during glucose deprivation.1-2

A 2012 retrospective study involving mostly patients with diabetes mellitus with severe hypoglycemia (majority with serum glucose 18-54 mg/dl) found that 23% of patients had hypothermia (defined as body temperature < 95◦F or 35◦C). The incidence of hypothermia was not affected by age, diabetes, season or time of day.  Two patients had extremely low temperatures (<90◦F).  There was an association between hypothermia and severity of hypoglycemia.1

An older experimental study (1974) involving 36 recumbent nude men in thermoneutral environment found that that insulin-induced hypoglycemia was associated with rectal temperatures below 96.2◦F (36◦C) in 33%.  Cooling was attributed to reduction in heat production and to secretion of sweat, peripheral vasodilatation and hyperventilation.2

But before you attribute hypothermia to hypoglycemia, make sure other causes of hypothermia such as sepsis, hypoadrenalism, hypothyroidism, alcohol and stroke are ruled out.3  

Bonus Pearl: Did you know that heat production is accomplished by shivering, which can increase the normal basal metabolic rate by 2-5 times as well as via non-shivering thermogenesis through increased levels of thyroxine and epinephrine?3

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. Tran C, Gariani K, Hermann FR, et al. Hypothermia is a frequent sign of severe hypoglycaemia in patients with diabetes. Diab Metab 2012;38:370-72. https://www.sciencedirect.com/science/article/abs/pii/S1262363612000535?via%3Dihub
  2. Strauch BS, Felig P, Baxter JD, et al. Hypothermia in hypoglycemia. JAMA 1969;210:345-46. https://jamanetwork.com/journals/jama/article-abstract/349081
  3. McCullough L, Arora S. Diagnosis and treatment of hypothermia. Am Fam Physician 2004;70:2325-2332. https://www.aafp.org/afp/2004/1215/p2325.html

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Mercy Hospital-St. Louis or its affiliate healthcare centers, Mass General Hospital, Harvard Medical School or its affiliated institutions. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

What’s the connection between severe hypoglycemia and hypothermia?

Is my patient with gout at higher risk of cancer?

Although the association of gout with cardiovascular disease, chronic kidney disease, hypertension, diabetes mellitus or obesity is well known, increasingly number of epidemiologic studies support the association of gout with higher risk of malignancy. 1,2

A 2015 meta-analysis of 3 studies involving over 50,000 persons concluded that gout was an independent risk factor for cancer, particularly urological, gastrointestinal and lung cancers. 1

A population-based study of comorbidities in over 2 million persons in Sweden found that in addition to an increased risk of diabetes mellitus, hypertension, chronic heart failure, chronic kidney disease and alcohol abuse, gout was associated with increased risk of malignancy: odds ratio 1.3 (1.2-1.5) in men and 1.1 (1.1-1.2) in women. 2

Although serum uric acid has been considered to have anti-oxidant properties, a prospective study of over 28,000 women followed over a median of 15.2 years did not find high serum acid levels to be protective of cancer.3 In fact, uric acid levels > 5.4 mg/dL at the time of subject enrollment was independently associated with increased risk of total cancer mortality and deaths from a variety of malignant neoplasms, including those of breast, female genital organs, and nervous systems. 3 In a similar prospective study involving men, high uric acid levels (>6.7 mg/dL) were associated with increased risk of mortality from gastrointestinal, respiratory and intrathoracic organ malignancies. 4

Whether the observed association between gout and higher risk of malignancy is causal or due to the company that gout often keeps (eg, lifestyle) is unclear.

Fun fact: Did you know that among mammals, only humans, great apes and certain breeds of dogs (eg, Dalmation) produce elevated levels of uric acid in the urine and blood? 5

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. Wang W, Xu D, Wang B, et al. Increased risk of cancer in relation to gout: a review of three prospective cohort studies with 50,358 subjects. Mediators of Inflammation 2015, Article ID 680853, 6 pages. https://www.ncbi.nlm.nih.gov/pubmed/26504360
  2. Wandell P. Gout and its comorbidities in the total population of Stockholm. Preventive Medicine 2015; 81:387-91. ISSN 0091-7435. https://www.ncbi.nlm.nih.gov/pubmed/26500085
  3. Strasak AM, Rapp K, Hilbe W, et al. The role of serum uric acid as an antioxidant protecting against cancer: prospective study in more than 28000 older Austrian women. Ann Onc 2007;18:1893-97. https://www.ncbi.nlm.nih.gov/pubmed/17785768
  4. Strasak Am, Hilbe RK, Oberaingner W, et al. Serum uric acid and risk of cancer mortality in a large prospective male cohort. Cancer Causes Control 2007;18:1021-9. https://www.ncbi.nlm.nih.gov/pubmed/17665312
  5. Bannasch D, Safra N, Young A, et al. Mutations in the SLC2A9 gene cause hyperuriosuria and hyperuricemia in the dog. PLOS Genet 2008;4:e1000246. https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1000246&type=printable
Is my patient with gout at higher risk of cancer?

Why is my diabetic patient complaining of arm pain and localized edema for couple of weeks without an obvious cause?

Aside from the usual suspects associated with a painful extremity (eg, trauma, deep venous thrombosis and soft tissue infections), think of spontaneous diabetic myonecrosis (DMN), also known as diabetic muscle infarction (1-3).

DMN is characterized by abrupt onset of painful swelling of the affected muscle, most often of the lower extremities, but also occasionally upper extremities. DMN occurs in patients with longstanding DM whose blood glucose control has deteriorated over time, often with nephropathy, retinopathy and/or neuropathy (1-3).

Couple of things to remember when considering DMN in your differential of a painful extremity. First, except for localized edema and tenderness over the involved muscle, the exam may be unremarkable. Specifically, there is no erythema or signs of compartment syndrome and fever is absent in the great majority of patients (~90%) (2). Even white blood cell count and creatine kinase (CK) are usually normal. The reason for normal CK at presentation is not clear but CK might have already peaked by the time of patient presentation (3). In contrast, C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) are usually elevated (>80%) (1).

MRI (without contrast in patients with renal insufficiency) is the imaging of choice with muscle enlargement and edema with hyperintense signal on T2-weighted images and other changes, including perifascial, perimuscular and or subcutaneous edema (1-3). Muscle biopsy is not currently recommended because of its adverse impact on time to symptomatic improvement. Non-surgical therapy, with rest, analgesia and glycemic control is usually recommended (1-3).

 
Though its exact cause is still unclear, atherosclerosis, diabetic microangiopathy, vasculitis with thrombosis and ischemia-reperfusion injury have been posited as potential precipitants for DMN. The role of anti-phospholipid syndrome, particularly in patients with type I DM, is unclear (1,2).

 
Bonus pearl: Did you know that symptoms of DMN may last for weeks with at least one-third of patients having a recurrence in the same muscle or elsewhere (1)?

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Reference
1. Horton WB, Taylor JS, Ragland TJ, et al. Diabetic muscle infarction: a systematic review. BMJ Open Diabetes Research and Care 2015;3:e000082.
2. Trujillo-Santos AJ. Diabetic muscle infarction. An underdiagnosed complication of long-standing diabetes. Diabetes Care 2003;26:211-15.
3. Diabetes muscle infarction in end-stage renal disease:A scoping review on epidemiology, diagnosis and treatment. World J Nephrol 2018;7:58-64.

Why is my diabetic patient complaining of arm pain and localized edema for couple of weeks without an obvious cause?

Why is my patient with diabetic ketoacidosis (DKA) and hypovolemia hypertensive?

Although we may expect patients with DKA to present with hypotension due to hypovolemia, many patients with DKA may actually be hypertensive. This finding is particularly intriguing because hyperinsulinemia, not insulinopenia as found in DKA, has been associated with hypertension. 1,2

Though not proven, potential explanations for hypertension in DKA include elevated serum levels of catecholamines, pro-inflammatory cytokines, renin, angiotension II and aldosterone.3-5 Hyperosmolality may also lead to the release of antidiuretic hormone (ADH) which increases blood pressure via V2 receptors.  Another possibility is that the high insulin levels associated with the treatment of DKA suppress the catecholamine-stimulated production of vasodilative eicosanoids (eg, prostaglandins) by adipose tissue. 1 It’s possible that in any given patient, 1 or more of these mechanisms may be enough to override the potential hypotensive effect of insulin deficiency in DKA.

We should note that reports of frequent hypertension in DKA have primarily involved pediatric patients. A 2011 study found that 82% of pediatric patients with DKA had hypertension during the first 6 hours of admission with no patient having hypotension.3  

On the other extreme, refractory hypotension without obvious cause (eg, sepsis, acute adrenal insufficiency, cardiogenic causes) has also been reported in DKA.5Because insulin inhibits the production of vasodilative prostaglandins (eg, PGI2 and PGE2), severe insulin deficiency in DKA can also contribute to hypotension along with volume depletion. 

Potential genetic polymorphism in the synthesis and metabolism of prostaglandins may at least partially explain the varied blood pressure response and whether a patient with DKA presents with hypertension or hypotension. 5  

The author would like to acknowledge the valuable contribution of Lloyd Axelrod MD, Massachusetts General Hospital, to this post.

If you liked this post, sign up under MENU and catch future pearls right into your inbox!

References

  1. Axelrod L. Insulin, prostaglandins, and the pathogenesis of hypertension. Diabetes 1991;40:1223-1227. https://diabetes.diabetesjournals.org/content/40/10/1223&nbsp;
  2. Chatzipantelli K, Head C, Megerman J, et al. The relationship between plasma insulin level, prostaglandin productin by adipose tissue and blood pressure in normal rats and rats with diabetes mellitus and diabetic ketoacidosis. Metabolism 1996;45:691-98. https://www.sciencedirect.com/science/article/abs/pii/S002604959690133X&nbsp;
  3. Deeter KH, Roberts JS, Bradford H, et al. Hypertension despite dehydration during severe pediatric diabetic ketoacidosis. Pediatr Diabetes 2011;12:295-301. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-5448.2010.00695.x&nbsp;
  4. Ferris JB, O’Hare JA, Kelleher CM, et al. Diabetic control and the renin-angiotensin system, catecholamines and blood pressure. Hypertension 1985 7(Suppl II):II-58-II-63. https://www.ahajournals.org/doi/abs/10.1161/01.HYP.7.6_Pt_2.II58  
  5. Singh D, Cantu M, Marx MHM, et al. Diabetic ketoacidosis and fluid refractory hypotension. Clin Pediatrics 2016;55:182-84. https://journals.sagepub.com/doi/abs/10.1177/0009922815584549?journalCode=cpja&nbsp;

 

Why is my patient with diabetic ketoacidosis (DKA) and hypovolemia hypertensive?

My patient with diabetes mellitus is now admitted with pneumonia. Does diabetes increase the risk of pneumonia requiring hospitalization?

The weight of the evidence to date suggests that diabetes mellitus (DM) does increase the risk of pneumonia-related hospitalization.1-3

A large population-based study involving over 30,000 patients found an adjusted relative risk (RR) of hospitalization with pneumonia of 1.26 (95% C.I 1.2-1.3) among patients with DM compared to non-diabetics.  Of note, the risk of pneumonia-related hospitalization was significantly higher in type 1 as well as type 2 DM and among patients whose A1C level was ≥9.1  Another population-based study found a high prevalence of DM (25.6%) in patients hospitalized with CAP, more than double that in the population studied.2  A 2016 meta-analysis of observational studies also found increased incidence of respiratory tract infections among patients with diabetes (OR 1.35, 95% C.I. 1.3-1.4).

Not only does DM increase the risk of pneumonia-related hospitalization, but it also appears to adversely affect its outcome with increased in-hospital mortality.2 Among patients with type 2 DM,  excess mortality has also been reported at 30 days, 90 days and 1 year following hospitalization for pneumonia. 4,5 More specifically, compared to controls with CAP, 1 year mortality of patients with DM was 30% (vs 17%) in 1 study. 4

Potential reasons for the higher incidence of pneumonia among patients with DM include increased risk of aspiration (eg, in the setting of gastroparesis, decreased cough reflex), impaired immunity (eg, chemotaxis, intracellular killing), pulmonary microangiopathy and coexisting morbidity. 1,3,5,6

Bonus Pearl: Did you know that worldwide DM has reached epidemic levels, such that if DM were a nation, it would surpass the U.S. as the 3rd most populous country! 7

If you liked this post, sign up under MENU and catch future fresh pearls straight into your mailbox!

References

  1. Kornum JB, Thomsen RW, RUS A, et al. Diabetes, glycemic control, and risk of hospitalization with pneumonia. A population-based case-control study. Diabetes Care 2008;31:1541-45. https://www.ncbi.nlm.nih.gov/pubmed/17595354
  2. Martins M, Boavida JM, Raposo JF, et al. Diabetes hinders community-acquired pneumonia outcomes in hospitalized patients. BMJ Open Diabetes Research and Care 2016;4:e000181.doi:10.1136/bmjdrc-2015000181. https://drc.bmj.com/content/4/1/e000181
  3. Abu-Ahour W, Twells L, Valcour J, et al. The association between diabetes mellitus and incident infections: a systematic review and meta-analysis of observational studies. BMJ Open Diabetes Research and Care 2017;5:e000336. https://drc.bmj.com/content/5/1/e000336. 
  4. Falcone M, Tiseo G, Russo A, et al. Hospitalization for pneumonia is associated with decreased 1-year survival in patients with type 2 diabetes. Results from a prospective cohort study. Medicine 2016;95:e2531. https://www.ncbi.nlm.nih.gov/pubmed/26844461
  5. Kornum JB, Thomsen RW, Rus A, et al. Type 2 diabetes and pneumonia outcomes. A population-based cohort study. Diabetes Care 2007;30:2251-57. https://www.ncbi.nlm.nih.gov/pubmed/17595354
  6. Koziel H, Koziel MJ. Pulmonary complications of diabetes mellitus. Pneumonia. Infect Dis Clin North Am 1995;9:65-96. https://www.ncbi.nlm.nih.gov/pubmed/7769221
  7. Zimmet PZ. Diabetes and its drivers: the largest epidemic in human history? Clinical Diabetes and Endocrinology 2017;3:1 https://clindiabetesendo.biomedcentral.com/articles/10.1186/s40842-016-0039-3  

 

My patient with diabetes mellitus is now admitted with pneumonia. Does diabetes increase the risk of pneumonia requiring hospitalization?