My patient with diabetes mellitus is now admitted with pneumonia. Does diabetes increase the risk of pneumonia requiring hospitalization?

The weight of the evidence to date suggests that diabetes mellitus (DM) does increase the risk of pneumonia-related hospitalization.1-3

A large population-based study involving over 30,000 patients found an adjusted relative risk (RR) of hospitalization with pneumonia of 1.26 (95% C.I 1.2-1.3) among patients with DM compared to non-diabetics.  Of note, the risk of pneumonia-related hospitalization was significantly higher in type 1 as well as type 2 DM and among patients whose A1C level was ≥9.1  Another population-based study found a high prevalence of DM (25.6%) in patients hospitalized with CAP, more than double that in the population studied.2  A 2016 meta-analysis of observational studies also found increased incidence of respiratory tract infections among patients with diabetes (OR 1.35, 95% C.I. 1.3-1.4).

Not only does DM increase the risk of pneumonia-related hospitalization, but it also appears to adversely affect its outcome with increased in-hospital mortality.2 Among patients with type 2 DM,  excess mortality has also been reported at 30 days, 90 days and 1 year following hospitalization for pneumonia. 4,5 More specifically, compared to controls with CAP, 1 year mortality of patients with DM was 30% (vs 17%) in 1 study. 4

Potential reasons for the higher incidence of pneumonia among patients with DM include increased risk of aspiration (eg, in the setting of gastroparesis, decreased cough reflex), impaired immunity (eg, chemotaxis, intracellular killing), pulmonary microangiopathy and coexisting morbidity. 1,3,5,6

Bonus Pearl: Did you know that worldwide DM has reached epidemic levels, such that if DM were a nation, it would surpass the U.S. as the 3rd most populous country! 7

If you liked this post, sign up under MENU and catch future fresh pearls straight into your mailbox!

References

  1. Kornum JB, Thomsen RW, RUS A, et al. Diabetes, glycemic control, and risk of hospitalization with pneumonia. A population-based case-control study. Diabetes Care 2008;31:1541-45. https://www.ncbi.nlm.nih.gov/pubmed/17595354
  2. Martins M, Boavida JM, Raposo JF, et al. Diabetes hinders community-acquired pneumonia outcomes in hospitalized patients. BMJ Open Diabetes Research and Care 2016;4:e000181.doi:10.1136/bmjdrc-2015000181. https://drc.bmj.com/content/4/1/e000181
  3. Abu-Ahour W, Twells L, Valcour J, et al. The association between diabetes mellitus and incident infections: a systematic review and meta-analysis of observational studies. BMJ Open Diabetes Research and Care 2017;5:e000336. https://drc.bmj.com/content/5/1/e000336. 
  4. Falcone M, Tiseo G, Russo A, et al. Hospitalization for pneumonia is associated with decreased 1-year survival in patients with type 2 diabetes. Results from a prospective cohort study. Medicine 2016;95:e2531. https://www.ncbi.nlm.nih.gov/pubmed/26844461
  5. Kornum JB, Thomsen RW, Rus A, et al. Type 2 diabetes and pneumonia outcomes. A population-based cohort study. Diabetes Care 2007;30:2251-57. https://www.ncbi.nlm.nih.gov/pubmed/17595354
  6. Koziel H, Koziel MJ. Pulmonary complications of diabetes mellitus. Pneumonia. Infect Dis Clin North Am 1995;9:65-96. https://www.ncbi.nlm.nih.gov/pubmed/7769221
  7. Zimmet PZ. Diabetes and its drivers: the largest epidemic in human history? Clinical Diabetes and Endocrinology 2017;3:1 https://clindiabetesendo.biomedcentral.com/articles/10.1186/s40842-016-0039-3  

 

My patient with diabetes mellitus is now admitted with pneumonia. Does diabetes increase the risk of pneumonia requiring hospitalization?

My patient with community-acquired pneumonia (CAP) will be going home on an oral antibiotic. Is there a significant difference in the risk of Clostridium difficile infection among the usual CAP antibiotics?

Not all antibiotics are equal in their risk of CDI. Among the common antibiotics used for respiratory tract infections, doxycycline appears to be the least likely to be associated with CDI. 

A population-based case-control study of community-acquired CDI found that while recent exposure increased the risk of CDI for fluoroquinolones, macrolides, cephalosporins, sulfonamides and trimethoprim and penicillins, the risk of CDI with tetracycline use was not increased (1).  Similar findings (with the exception of sulfonamides also appearing risk-neutral) have been reported by others (2). 

Among patients receiving ceftriaxone, receipt of doxycycline has been associated with protection against development of CDI (3).  A 2018 systematic review and meta-analysis also concluded that tetracyclines were associated with a decreased risk of CDI; OR 0.55 (95% CI 0,40-0.75) for doxycycline alone (4). 

 

The most likely explanation for why doxycycline may be associated with lower risk of CDI is its in vitro activity against anaerobes, including C. difficile. Additionally, because of its ability to inhibit protein synthesis, doxycycline may attenuate C. difficile toxin production. Its high bioavailability and maximal absorption from the upper gastrointestinal tract may also mitigate its impact on gut flora, further reducing its risk of CDI (3). 

 

References
1. Delaney JAC, Dial S, Barkun A et al. Antimicrobial drugs and community-acquired Clostridium difficile-associated disease-UK. Emerg Infect Dis 2007:13;761-63. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2738472
2. Kuntz JL, Chirchilles EA, et al. Incidence of and risk factors for community-associated Clostridium difficile infection : A nested case-control study. BMC Infect Dis 2011;11:194. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154181/ 
3. Doernberg SB, Winston LG, Deck DH, et al. Does doxycycline protect against development of Clostridium difficile infection. Clin Infec Dis 2012;44:615-20. https://www.academia.edu/7814406/Does_Doxycycline_Protect_Against_Development_of_Clostridium_difficile_Infection
4. Tariq R, Cho J, Kapoor S, et al. Low risk of primary Clostridium difficile infection with tetracyclines: a systematic review and metanalysis. Clin Infect Dis 2018; 766:514-27. https://academic.oup.com/cid/article/66/4/514/4161552 

If you liked this post, sign up under MENU and get future pearls straight into your mailbox!

My patient with community-acquired pneumonia (CAP) will be going home on an oral antibiotic. Is there a significant difference in the risk of Clostridium difficile infection among the usual CAP antibiotics?

How should I interpret the growth of “normal respiratory flora” from sputum of my patient with community-acquired pneumonia (CAP)?

Since the primary reason for obtaining a sputum culture in a patient with pneumonia is to sample the lower respiratory tract, you should first verify that the sputum was “adequate” by reviewing the gram stain. Absence of neutrophils (unless the patient is neutropenic) with or without epithelial cells on gram stain of sputum suggests that it may not be an adequate sample (ie, likely saliva)1, and therefore growth of normal respiratory flora (NRF) should not be surprising in this setting.  

Other potential explanations for NRF on sputum culture in patients with CAP include:2-5

  • Delay in sputum processing with possible overgrowth of oropharyngeal flora.
  • Pneumonia caused by pathogens that do not grow on standard sputum culture media (eg, atypical organisms, viruses, anaerobes).
  • Pneumonia caused by potential pathogens such as as Streptococcus mitis and Streptococcus anginosus group that may be part of the NRF.
  • Initiation of antibiotics prior to cultures (eg, in pneumococcal pneumonia).

Of note, since 2010, several studies have shown that over 50% of patients with CAP do not have an identifiable cause.3 So, growing NRF from sputum of patients with CAP appears to be common.

References

  1. Wong LK, Barry AL, Horgan SM. Comparison of six different criteria for judging the acceptability of sputum specimens. J Clin Microbiol 1982;16:627-631. https://www.ncbi.nlm.nih.gov/pubmed/7153311
  2. Donowitz GR. Acute pneumonia. In Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases (2010). Churchill Livingstone, pp 891-916.
  3. Musher DM, Abers MS, Bartlett JG. Evolving understanding of the causes of pneumonia in adults, with special attention to the role of pneumococcus. Clin Infect Dis 2017;65: 1736-44. https://www.ncbi.nlm.nih.gov/pubmed/29028977
  4. Abers MS, Musher DM. The yield of sputum culture in bacteremic pneumococcal pneumonia after initiation of antibiotics. Clin Infect Dis 2014; 58:1782. https://www.ncbi.nlm.nih.gov/pubmed/24604901
  5. Bartlett JG, Gorbach SL, Finegold SM. The bacteriology of aspiration pneumonia. Bartlett JG, Gorbach SL, Finegold SM. Am J Med 1974;56:202-7. https://www.ncbi.nlm.nih.gov/pubmed/4812076
How should I interpret the growth of “normal respiratory flora” from sputum of my patient with community-acquired pneumonia (CAP)?

The urine antigen for Legionella in my patient with severe community-associated pneumonia is negative. How well does it rule out Legionella pneumonia?

Not as well as you might think!

Legionella urine antigens are 60%-80% sensitive (>99% specific) for detecting L. pneumophila serogroup 1 which accounts for about 70%-80% of Legionnaire’s disease (LD) in the US1; there are at least 15 serogroups.2 So as many as 40% or more LD may be missed by urine antigen testing alone. 2 Urine antigen can be excreted as early 3 days after the onset of symptoms and can persist for >300 days which may present a problem in diagnosing a current illness in patients with recurrent pneumonia. 2 One study reported lowest sensitivity (80%) for antigen testing during days 4 to 7 days of symptoms.3Other means of looking for Legionella include culture of respiratory samples for L. pneumophila which can detect all types of Legionella species (sensitivity 20%-80%) but has a lengthy turnaround time. Paired antibody testing may also be performed (sensitivity 70%-80%) in undiagnosed cases of severe pneumonia. 1Take home point: Don’t depend totally on urine antigen testing to rule out LD.

Final fun fact: Did you know that legionellae survive in the aquatic environment by parasitizing free-living protozoa?

References

  1. CDC. Legionellosis: United States, 2000-2009. MMWR 2011;60:1083-86. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6032a3.htm
  2. Fields BS, Benson RF, Besser RE. Legionella and Legionnaire’s disease: 25 years of investigation. Clin Micro Rev 2002;15:506-26. https://www.ncbi.nlm.nih.gov/pubmed/12097254  
  3. Kohler RB, Zimmerman SE, Wilson E, et al. Onset and duration of urinary antigen excretion in Legionnaire’s disease. J Clin Microbiol 20:605-7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC271393
The urine antigen for Legionella in my patient with severe community-associated pneumonia is negative. How well does it rule out Legionella pneumonia?

How well does procalcitonin distinguish bacterial from viral causes of community-acquired pneumonia in hospitalized patients?

Not extremely well! Although a recent multicenter prospective study in adult hospitalized patients reported that the median procalcitonin (PCT) concentration was significantly lower for community-acquired pneumonia (CAP) caused by viral pathogens ( 0.09 u/ml vs atypical bacteria [0.2 ug/ml] and typical bacteria [2.5 ug/ml]),  PCT was <0.1 ug/ml and <0.25 ug/ml  in 12.4% and 23.1% of typical bacterial cases, respectively1

This means that we could potentially miss about a quarter of CAP cases due to typical bacterial causes if we use the <0.25 ug/ml threshold (<0.20 is ug/ml has been used to exclude sepsis2). For these reasons and based on the results from another study3, no threshold for PCT can reliably distinguish bacterial from viral etiologies of CAP4.  Clinical context is essential in interpreting PCT levels! Also go to a related pearl on this site5.

Can PCT distinguish Legionella from other atypical bacterial causes of CAP (eg, caused by Mycoplasma or Chlamydophila)? The answer is “maybe”! Legionella was associated with higher PCT levels compared to  Mycoplasma and Chlamydophila in one study1, but not in another3.

References

  1. Self WH, Balk RA, Grijalva CG, et al. Procalcitonin as a marker of etiology in adults hospitalized with community-acquired pneumonia. Clin Infect Dis 2017;65:183-90. https://www.ncbi.nlm.nih.gov/pubmed/28407054
  2. Meisner M. Update on procalcitonin measurements. Ann Lab Med 2014;34:263-73.
  3. Krüger S, Ewig S, Papassotiriou J, et al. Inflammatory parameters predict etiologic patterns but do not allow for individual prediction of etiology in patients with CAP-Results from the German competence network CAPNETZ. Resp Res 2009;10:65. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2714042/pdf/1465-9921-10-65.pdf
  4. Bergin SP, Tsalik EL. Procalcitonin: the right answer but to which question? Clin Infect Dis 2017; 65:191-93. https://academic.oup.com/cid/article-abstract/65/2/191/3605416/Procalcitonin-The-Right-Answer-but-to-Which?redirectedFrom=fulltext
  5. https://pearls4peers.com/2017/07/01/should-i-order-serum-procalcitonin-on-my-patient-with-suspected-infection    
How well does procalcitonin distinguish bacterial from viral causes of community-acquired pneumonia in hospitalized patients?

Is treatment of pneumococcal pneumonia with bacteremia any different than pneumococcal pneumonia without bacteremia?

In the absence of disseminated infection such as meningitis or endocarditis, there is no convincing evidence that bacteremic pneumococcal pneumonia (BPP) requires either longer course of IV or oral antibiotics.

In fact, although previously thought to have a worse prognosis, recent data have failed to demonstrate any difference in time to clinical stability, duration of hospital stay or community-associated pneumonia (CAP)-related mortality with BPP when other factors such as patient comorbidities and severity of disease are also considered1,2

Although many patients with CAP receive 7-10 days of antibiotic therapy, shorter durations as little as 5 days may also be effective3,4.  Generally, once patients with BPP have stabilized on parenteral therapy, a switch to an appropriate oral antibiotic (eg, a β-lactam or a respiratory quinolone such as levofloxacin) can be made safely5

Although large randomized-controlled studies of treatment of BPP are not available, a cumulative clinical trial experience with levofloxacin for patients with BPP reported a successful clinical response in >90% of patients (median duration of therapy 14 d)6. Resistance to levofloxacin and failure of treatment in pneumococcal pneumonia (with or without bacteremia), however, has been rarely reported7.

 

References

  1. Bordon J, Peyrani P, Brock GN. The presence of pneumococcal bacteremia does not influence clinical outcomes in patients with community-acquired pneumonia. Chest 2008;133;618-624.
  2. Cilloniz C, Torres A. Understanding mortality in bacteremic pneumococcal pneumonia. J Bras Pneumol 2012;38:419-421.
  3. Mandell LA, Wunderink RG, Anzueto A, et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 2007;44:S27-72.
  4. Shorr F, Khashab MM, Xiang JX, et al. Levofloxacin 750-mg for 5 days for the treatment of hospitalized Fine Risk Class III/IV community-acquired pneumonia patients. Resp Med 2006;100:2129-36.
  5. Ramirez JA, Bordon J. Early switch from intravenous to oral antibiotics in hospitalized patients with bacteremic community-acquired Streptococcus pneumonia pneumonia. Arch Intern Med 2001;161:848-50.
  6. Kahn JB, Bahal N, Wiesinger BA, et al. Cumulative clinical trial experience with levofloxacin for patients with community-acquired pneumonia-associated pneumococcal bacteremia. Clin Infect Dis 2004;38(supp 1):S34-42.
  7. Davidson R, Cavalcanti R, Brunton JL, et al. Resistance to levofloxacin and failure of treatment of pneumococcal pneumonia. N Engl J Med 2002;346:747-50.
Is treatment of pneumococcal pneumonia with bacteremia any different than pneumococcal pneumonia without bacteremia?

What is the sensitivity of nose swabs in detecting methicillin-resistant Staphylococcus aureus (MRSA) pneumonia?

In MRSA pneumonia, the sensitivity of nasal swab PCR may vary from as low as 24.2% to 88% (1-3). A 2018 meta-analysis found an overall sensitivity of 70.9% (community-acquired pneumonia/healthcare-associated pneumonia [HCAP] 85%, ventilator-associated pneumonia 40%) with overall negative predictive value of 96.5% (based on an overall MRSA pneumonia prevalence of 10%) (4). 

A single center  study involving  patients with possible HCAP and a low clinical pulmonary infection score (CPIS) — for whom antibiotics may not be necessary anyway (5)—suggested that discontinuation of empiric vancomycin in patients without an adequate respiratory culture and a negative nose and throat culture may be reasonable (6).

However, a prospective study of ICU patients concluded that “clinicians cannot reliably use the results of initial negative MRSA nasal swab results to withhold empirical MRSA coverage from patients who otherwise are at risk for MRSA infection” (3).

The previously cited 2018 meta-analysis study (4) cautions against use of MRSA screening in patients with structural lung disease (eg, cystic fibrosis or bronchiectasis) because colonization may be more frequent in the lower respiratory tract in these patients and screening tests may therefore be discordant (4).

Collectively, the available data suggest that it is reasonable to use a negative MRSA screen to help exclude pneumonia due to this pathogen in patients in whom MRSA infection is not highly suspected or those who are not severely ill.

 

References

  1. Rimawi RH, Ramsey KM, Shah KB, et al. Correlation between methicillin-resistant Staphylococcus aureus nasal sampling, and S. aureus pneumonia in the medical intensive care unit. Infect Control Hosp Epidemiol 2014;35:590-92. https://www.ncbi.nlm.nih.gov/pubmed/24709733
  2. Dangerfield B, Chung A, Webb B, et al. Predictive value of methicillin-resistant Staphylococcus aureus (MRSA) nasal swab PCR assay for MRSA pneumonia. Antimicrob Agents Chemother 2014;58:859-64. https://www.ncbi.nlm.nih.gov/pubmed/24277023
  3. Sarikonda KV, Micek ST, Doherty JA, et al. Methicillin-resistant Staphylococcus aureus nasal colonization is a poor predictor of intensive care unit-acquired methicillin-resistant Staphylococcus aureus infections requiring antibiotic treatment. Crit Care Med 2010;38:1991-1995. https://www.ncbi.nlm.nih.gov/pubmed/20683260
  4. Parente DM Cunha CB Mylonakis E et al. The clinical utility of methicillin-resistant Staphylococcus aureus (MRSA) nasal screening to rule out MRSA pneumonia: A diagnostic meta-analysis with antimicrobial stewardship implications. Clin Infect Dis 208;67:1-7.
  5. Napolitano LM. Use of severity scoring and stratification factors in clinical trials of hospital-acquired and ventilator-associated pneumonia. Clin Infect Dis 2010;51:S67-S80. https://www.ncbi.nlm.nih.gov/pubmed/20597675
  6. Boyce JM, Pop O-F, Abreu-Lanfranco O, et al. A trial of discontinuation of empiric vancomycin therapy in patients with suspected methicillin-resistant Staphylococcus aureus health care-associated pneumonia. Antimicrob Agents Chemother 2013;57:1163-1168. http://aac.asm.org/content/57/3/1163.full.pdf
What is the sensitivity of nose swabs in detecting methicillin-resistant Staphylococcus aureus (MRSA) pneumonia?

Should corticosteroids (CS) be routinely considered in the treatment of hospitalized patients with community-acquired pneumonia (CAP)?

A recent systematic review on the subject concluded that for hospitalized adults with CAP, systemic CS may reduce mortality by about ~3% (primarily in severe CAP), mechanical ventilation need by ~5%, and hospital stay by ~1 day (1). But determining who might benefit the most and at what CS dosage regimen without undue risk of side effects (e.g. hyperglycemia) may be tricky.  

A randomized control trial of patients with CAP on prednisone 50 mg daily x 7d (vs placebo) showed a significant shorter time to clinical stability (3 vs 4.4 d) and higher in-hospital hyperglycemia in the CS group (2).; this study was not powered to detect significant difference in mortality, however.  Less treatment failure with adjunctive CS but without impact on mortality was recently reported in a small study involving patients with serum CRP >150 mg/L (i.e. high inflammatory state) (3).

Fortunately, a multicenter trial (ESCAPe, Extended Steroid in CAP) is currently underway. In the meantime, before considering CS, we need to be confident of the diagnosis and severity of CAP, its potential adverse effects in individual patients, and the appropriateness of the antibiotic (s) on board.

If you like this post, sign up under MENU and get future pearls in right into your mailbox!

References

1. Siemieniuk RAC, Meade MO, Alonso-Coello P, et al. Corticosteroid therapy for patients hospitalized with community-acquired pneumonia: a systematic review and meta-analysis. Ann Intern Med 2015;165:519-528. https://www.ncbi.nlm.nih.gov/pubmed/26258555

2. Blum CA, Nigro N, Briel M. Adjunct prednisone therapy for patients with community-acquired pneumonia: a multi-centre, double-blind randomized, placebo-controlled trial. Lancet 2015;385:1511-1518. http://www.thelancet.com/journals/lancet/article/PIIS0140-6736(14)62447-8/abstract

3. Torres A, Sibila O, Ferrer M, et al. Effect of corticosteroids on treatment failure among hospitalized patients with severe community-acquired pneumonia and high inflammatory response: a randomized clinical trial. JAMA 2015;313:677-86. https://www.ncbi.nlm.nih.gov/pubmed/25688779

 

Should corticosteroids (CS) be routinely considered in the treatment of hospitalized patients with community-acquired pneumonia (CAP)?

In hospitalized patients with community-acquired pneumonia (CAP), has empiric treatment with beta-lactam plus macrolide or a quinolone been shown to be superior to beta-lactam monotherapy ?

Actually no!

In fact, a 2015 study of CAP from Netherlands, published in New England Journal of Medicine, demonstrated that empiric treatment with beta-lactam monotherapy was not inferior to strategies using a beta-lactam-macrolide combination or fluoroquinolone monotherapy with regard to 90-day mortality, or length of hospital stay (1). To help exclude Legionella pneumonia (often accounting for <5% of CAP[2]), urine Legionella antigen was routinely performed in this study.

So once Legionella has been reasonably excluded, unless suspicion for other atypical causes of CAP (i.e. Mycoplasma pneumoniae or Chlamydophila pneumoniae) remains high, empiric monotherapy with a beta-lactam (e.g. ceftriaxone) may be just as effective in many cases of CAP.

References

1. Postma DF1, van Werkhoven CH, van Elden LJ, et al. CAP-START Study Group Antibiotic treatment strategies for community-acquired pneumonia in adults. N Engl J Med. 2015;372:1312-23.  https://www.ncbi.nlm.nih.gov/pubmed/25830421  

2. von Baum H, Ewig S, Marre R, et al. Competence Network for Community Acquired Pneumonia Study Group. Community-acquired Legionella pneumonia: new insights from the German competence network for community acquired pneumonia. Clin Infect Dis 2008;46:1356. https://www.ncbi.nlm.nih.gov/pubmed/18419436

Contributed by Jessica A. Hennessey, MD, PhD, Mass General Hospital, Boston, MA

In hospitalized patients with community-acquired pneumonia (CAP), has empiric treatment with beta-lactam plus macrolide or a quinolone been shown to be superior to beta-lactam monotherapy ?

How should follow-up serum C-reactive protein (CRP) in patients with community-acquired pneumonia (CAP) be interpreted?

CRP level should drop to less than one-half of its value on admission after a couple of days of antibiotic therapy, since CRP half-life is less than a day following zero order elimination kinetics. 
Of interest, in a study of serial CRP in severe CAP (1), a CRP ratio >0.5 by day 3 was associated with non-resolving pneumonia ( sensitivity 91%, specificity 55%)   performing significantly better than body temperature or WBC count.  
So if there is any doubt about how a patient is doing clinically, a repeat CRP looking for a drop of greater than on-half after 3-4 days of therapy may be helpful.

 

Bonus Pearl: Did you know that the half-life of CRP is 19 h?

Liked this post? Download the app on your smart phone and sign up under MENU to  catch future  pearls right into your inbox!

 

Reference

1. Coelho L, Povoa P, Almenda E, et al. Usefulness of C-reactive protein in monitoring the severe community-acquired pneumonia clinical course.  Critical Care 2007;11:R92 https://ccforum.biomedcentral.com/articles/10.1186/cc6105

 


 

How should follow-up serum C-reactive protein (CRP) in patients with community-acquired pneumonia (CAP) be interpreted?