What changes should I consider in my treatment of hospitalized patients with community-acquired pneumonia (CAP) in light of the 2019 guidelines of the American Thoracic society (ATS) and Infectious Diseases Society of America (IDSA)?

Compared to 2007,1 the 2019 ATS/IDSA guidelines2 propose changes in at least 4 major areas of CAP treatment in inpatients, with 2 “Do’s” and 2 “Dont’s”:

  • Do select empiric antibiotics based on severity of CAP and risk factors for methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (see related pearl on P4P)
  • Do routinely treat CAP patients who test positive for influenza with standard CAP antibiotics
  • Don’t routinely provide anaerobic coverage in aspiration pneumonia (limit it to empyema and lung abscess) (see related pearl on P4P)
  • Don’t routinely treat CAP with adjunctive corticosteroids in the absence of refractory shock

β-lactam plus macrolide is recommended for both non-severe and severe CAP.  β-lactam plus respiratory fluoroquinolone is an alternative regime in severe CAP, though not endorsed as strongly as β-lactam plus macrolide therapy (low quality of evidence).  Management per CAP severity summarized below:

  • Non-severe CAP
    • β-lactam (eg, ceftriaxone, cefotaxime, ampicillin-sulbactam and newly-added ceftaroline) plus macrolide (eg, azithromycin, clarithromycin) OR respiratory fluoroquinolone (eg, levofloxacin, moxifloxacin)
    • In patients at risk of MRSA or P. aeruginosa infection (eg, prior isolation of respective pathogens, hospitalization and parenteral antibiotics in the last 90 days or locally validated risk factors—HCAP has been retired), obtain cultures/PCR
    • Hold off on MRSA or P. aeruginosa coverage unless culture/PCR results return positive.
  • Severe CAP
    • β-lactam plus macrolide OR β-lactam plus respiratory fluoroquinolone (see above)
    • In patients at risk of MRSA or P. aeruginosa infection (see above), obtain cultures/PCR
    • Add MRSA coverage (eg, vancomycin or linezolid) and/or P. aeruginosa coverage (eg, cefepime, ceftazidime, piperacillin-tazobactam, meropenem, imipenem) if deemed at risk (see above) while waiting for culture/PCR results

Duration of antibiotics is for a minimum of 5 days for commonly-targeted pathogens and a minimum of 7 days for MRSA or P. aeruginosa infections, irrespective of severity or rapidity in achieving clinical stability.

For patients who test positive for influenza and have CAP, standard antibacterial regimen should be routinely added to antiinfluenza treatment.

For patients suspected of aspiration pneumonia, anaerobic coverage (eg, clindamycin, ampicillin-sulbactam, piperacillin-tazobactam) is NOT routinely recommended in the absence of lung abscess or empyema.

Corticosteroids are NOT routinely recommended for non-severe (high quality of evidence) or severe (moderate quality of evidence) CAP in the absence of refractory septic shock.

Related pearls on P4P:

2019 CAP guidelines on diagnostics:                                        https://pearls4peers.com/2020/02/14/what-changes-should-i-consider-in-my-diagnostic-approach-to-hospitalized-patients-with-community-acquired-pneumonia-cap-in-light-of-the-2019-guidelines-of-the-american-thoracic-society-ats-and-inf/ 

Anerobic coverage of aspiration pneumonia: https://pearls4peers.com/2019/07/31/should-i-routinely-select-antibiotics-with-activity-against-anaerobes-in-my-patients-with-presumed-aspiration-pneumonia/

References

  1. Mandell LA, Wunderink RG, Anzueto A. Infectious Disease Society of America/American Thoracic Society Consensus Guidelines on the Management guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 2007;44:S27-72. https://www.ncbi.nlm.nih.gov/pubmed/17278083
  2. Metlay JP, Waterer GW, Long AC, et al. Diagnosis and treatment of adults with community-acquired pneumonia. Am J Respir Crit Care Med 2019;200:e45-e67. https://www.ncbi.nlm.nih.gov/pubmed/31573350

 

What changes should I consider in my treatment of hospitalized patients with community-acquired pneumonia (CAP) in light of the 2019 guidelines of the American Thoracic society (ATS) and Infectious Diseases Society of America (IDSA)?

My patient with no known liver disease appears to have bilateral asterixis. What other causes should I consider?

Although originally described in 1949 in patients with liver disease and labelled as “liver flap”, numerous other causes of asterixis exist aside from severe liver disease (1,2). As early as 1950s, asterixis was observed among some patients with heart failure and pulmonary insufficiency but without known significant liver disease (3). Azotemia has also been associated with asterixis.

 
Don’t forget about medication-associated asterixis . Commonly used drugs such as gabapentin, pregabalin, phenytoin, and metoclopramide have been associated with asterixis (1,4) . Even antibiotics such as ceftazidime and high dose trimethoprim-sulfamethoxazole may be culprits (1,5). There are many psychiatric drugs including lithium, carbamazepine, clozapine, and valproic acid that have been implicated (1,6) as well. Some reviews have also included hypomagnesemia and hypokalemia on the list of causes of asterixis (1).

 
Although asterixis is essentially a negative myoclonus with episodic loss of electrical activity of muscle and its tone, its exact pathophysiology remains unclear (7). 

 

Bonus Pearl: Did you know that the origin of the word asterixis is An (negative)-iso (equal)-sterixis (solidity) which was shortened by Foley and Adams, its original discoverers, to what we now refer to as “asterixis” (1).

 

References
1. Agarwal R, Baid R. Asterixis. J Postgrad Med 1016;62:115-7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4944342/ 2. Pal G, Lin MM, Laureno R. Asterixis: a study of 103 patients. Metab Brain Dis; 2014:29:813-24. https://link.springer.com/article/10.1007%2Fs11011-014-9514-7
3. Conn HO. Aterixis—Its occurrence in chronic pulmonary disease, with a commentary on its general mechanism. N Engl J Med 1958;259:564-569. https://www.nejm.org/doi/full/10.1056/NEJM195809182591203
4. Kim JB, Jung JM, Park MH. Negative myoclonus induced by gabapentin and pregabalin: a case series and systemic literature review. J Neurol Sci 2017;382:36-9. https://www.sciencedirect.com/science/article/pii/S096758681830225X
5. Gray DA, Foo D. Reversible myoclonus, asterixis, and tremor associated with high dose trimethoprim-sulfamethoxazole: a case report. J Spinal Cord Med 2016; Vol. 39 (1), pp. 115-7. https://www.ncbi.nlm.nih.gov/pubmed/26111222
6. Nayak R, Pandurangi A, Bhogale G, et al. Aterixis (flapping tremors) as an outcome of complex psychotropic drug interaction. J Neuropsychiatry Clin Neurosci 2012;24: E26-7. https://neuro.psychiatryonline.org/doi/pdf/10.1176/appi.neuropsych.101102667. Ugawa Y, Shimpo T, Mannen T. Physiological analysis of asterixis: silent period locked averaging. J Neurol Neurosurg Psych 1989;52:89-9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1032663/pdf/jnnpsyc00523-0104.pdf

 

If you liked this pearl, sign up under MENU and receive future pearls straight into your mailbox!

 

My patient with no known liver disease appears to have bilateral asterixis. What other causes should I consider?