My patient with cocaine and alcohol addiction is admitted with repeated convulsions during which he seems totally conscious. What could I be missing?

Consider strychnine poisoning as a cause of recurrent generalized tonic clonic seizures and muscle spasm with clear sensorium either during or following the episode. 1-4 In contrast to the cortical source of most seizures, convulsions due to strychnine poisoning are due to the blocking of the action of spinal and brain-stem inhibitory neurons resulting in overwhelming muscle rigidity, not unlike that seen in tetanus.

Although strychnine was found in various tonics and cathartic agents and was a common cause of accidental death in children under 5 years of age in early 20th century, it is still used in various rodenticides and pesticides.3  Today, it may be used intentionally in suicide attempts as well as an adulterant in street drugs, such as amphetamines, heroin and especially cocaine. 1,3,5

The initial symptoms of strychnine poisoning include nervousness, a hyperalert state, and confusion. These symptoms may be followed by severe muscle rigidity throughout the body often in response to minimal stimuli, such as physical contact, bright lights, noise and medical procedures.3, 6,7  Interestingly, strychnine also has an excitatory action on the medulla and enhances the sensation of touch, smell, hearing and sight.6  The cause of death is usually respiratory arrest due to prolonged muscle spasms, often complicated by rhabdomyolysis and associated renal failure.1

So among the numerous causes of seizures, think of strychnine as another potential cause when there is no concurrent loss of consciousness or the expected postictal state.

Bonus Pearl: Did you know that strychnine may be present in street drugs with a variety of names such as “back breakers”, “homicide”, “red rock opium”, “red stuff” and “spike”? 7

References

  1. Wood DM, Webser E, Martinez D, et al. Case report: survival after deliberate strychnine self-poisoning, with toxicokinetic data. Critical Care 2002;6:456-9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC130147/
  2. Santhosh GJ, Joseph W, Thomas M. Strychnine poisoning. J Assoc Physicians India 2003;51:736. https://www.ncbi.nlm.nih.gov/pubmed/14621058
  3. Libenson MH, Young JM. Case records of Massachusetts General Hospital. A 16 years boy with an altered mental status and muscle rigidity. N Engl J Med 2001;344:1232-9. https://www.nejm.org/doi/full/10.1056/NEJM200104193441608
  4. Smith BA. Strychnine poisoning. J Emerg Med 1990;8: 321-25. https://www.ncbi.nlm.nih.gov/pubmed/2197324
  5. O’Callaghan WG, Ward M, Lavelle P, et al. Unusual strychnine poisoning and its treatment: report of eight cases. B Med J 1982;285:478. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1499293/
  6. Burn DJ, Tomson CRV, Seviour J, et al. Strychnine poisoning as an unusual cause of convulsions. Postgrad Med J 1989;65:563-64. https://www.ncbi.nlm.nih.gov/pubmed/2602253
  7. Radosavljevic J, Jeffries WS, Peter JV. Intentional strychnine use and overdose—an entity of the past? Crit Care Resusc 2006;8: 260-61. https://www.ncbi.nlm.nih.gov/pubmed/16930120

If you liked this post, sign up under MENU and get future pearls straight into your mail box!

My patient with cocaine and alcohol addiction is admitted with repeated convulsions during which he seems totally conscious. What could I be missing?

Why is my hospitalized patient with alcohol withdrawal syndrome so thrombocytopenic?

Although thrombocytopenia associated with chronic alcoholism may be related to complications of cirrhosis (eg, platelet sequestration in spleen due to portal hypertension, poor platelet production, and increased platelet destruction) (1), it may also occur in the absence of cirrhosis due to the direct toxic effect of alcohol on platelet production and survival (2).

 
In a prospective study of patients ingesting the equivalent of a fifth or more daily of 86 proof whiskey admitted for treatment of alcohol withdrawal—without evidence of severe liver disease, infection or sepsis— 81% had initial platelet counts below 150,000/µl, with about one-third having platelet counts below 100,000 µl (as low as 24,000/ul) (3).

 
In most patients, 2-3 days elapsed before the platelet count began to rise significantly, peaking 5-18 days after admission. Others have also reported that platelet counts rise within 5-7 days and normalize in a few weeks after alcohol withdrawal (1); bleeding complications have been uncommon in this setting.

 
Perhaps even more intriguing is the report of the association between thrombocytopenia in early alcohol withdrawal and the development of delirium tremens or seizures (sensitivity and specificity ~ 70%, positive predictive value less than 10% but with a negative predictive value of 99%) (4)! In fact, the authors suggested that, if their findings are corroborated, a normal platelet count could potentially be used to identify patients at low risk of alcohol withdrawal syndrome and therefore outpatient therapy. 

References
1. Mitchell O, Feldman D, Diakow M, et al. The pathophysiology of thrombocytopenia in chronic liver disease. Hepatic Medicine: Evidence and Research 2016;8 39-50. https://www.dovepress.com/the-pathophysiology-of-thrombocytopenia-in-chronic-liver-disease-peer-reviewed-article-HMER
2. Cowan DH. Effect of alcoholism on hemostasis. Semin Hematol 1980;17:137-47. https://www.ncbi.nlm.nih.gov/pubmed/6990498
3. Cowan DH, Hines JD. Thrombocytopenia of severe alcoholism. Ann Intern Med 1971;74:37-43. http://annals.org/aim/article-abstract/685069/thrombocytopenia-severe-alcoholism.

4. Berggren U, Falke C, Berglund KJ, et al. Thrombocytopenia in early alcohol withdrawal is associated with development of delirium tremens or seizures. Alcohol & Alcoholism 2009;44:382-86. https://www.ncbi.nlm.nih.gov/pubmed/19293148

If you like this pearl, sign up under menu and receive future pearls right into your mailbox!

Why is my hospitalized patient with alcohol withdrawal syndrome so thrombocytopenic?

Is neurotoxicity caused by cefepime common?

The incidence of cefepime-induced neurotoxicity (CIN) has varied from 1% to 15%.1 Potential clinical manifestations of CIN include delirium, impaired level of consciousness, disorientation/agitation, myoclonus, non-convulsive status epilepticus, seizures, and aphasia.1  Many of these signs and symptoms (eg, delirium) are common among hospitalized patients.

Although renal dysfunction and inadequately adjusted dosages are often cited as risk factors, one-half of patients develop suspected CIN despite apparently proper adjustment for renal function.In addition,  several case reports of CIN have involved patients with normal renal function. 2  A study of 1120 patients receiving cefepime found epileptiform discharges in 14 cases, most having normal renal function.3 Of interest, in the same study, the prevalence of epileptiform discharges was 6-fold higher than that of meropenem!

Proposed mechanisms for CIN include its avidity for central nervous system GABA-A receptors (higher than that of many beta-lactam antibiotics) combined with its high concentration in brain tissue.1 Renal impairment, decreased protein binding, and increased organic acid accumulation can increase transfer of cefepime across the blood brain barrier from an expected 10% to up to 45% of its serum concentration, further contributing to its neurotoxicity.4

 

References

  1. Appa AA, Jain R, Rakita RM, et al. Characterizing cefepime neurotoxicity: a systematic review. Open Forum Infectious Diseases 2017 Oct 10;4(4):ofx170. doi: 10.1093/ofid/ofx170. eCollection 2017 Fall. https://www.ncbi.nlm.nih.gov/pubmed/29071284
  2. Meillier A, Rahimian D. Cefepime-induced encephalopathy with normal renal function. Oxford Medical Case Reports, 2016;6, 118-120. https://academic.oup.com/omcr/article/2016/6/118/2362353
  3. Naeije G, Lorent S, Vincent JL, et al. Continuous epileptiform discharges in patients treated with cefpime or meropenem Arch Neurol 2011;68:1303-7. https://www.ncbi.nlm.nih.gov/pubmed/21987544
  4. Payne LE, Gaganon DJ, Riker RR, et al. Cefepime-induced neurotoxicity: a systematic review. Critical Care 017;21:276. https://www.ncbi.nlm.nih.gov/pubmed/29137682

 

If you liked this pearl, sign up under menu and receive future posts right into your mailbox!

Is neurotoxicity caused by cefepime common?

200 pearls and counting! Take the Pearls4Peers quiz #2!

Multiple choice (choose 1 answer)
1. Which of the following classes of antibiotics is associated with peripheral neuropathy?
a. Penicillins
b. Cephalosporins
c. Macrolides
d. Quinolones

 

 

2. The best time to test for inherited thrombophilia in a patient with acute deep venous thrombosis is…
a. At least 1 week after stopping anticoagulants and a minimum of 3 months of anticoagulation
b. Just before initiating anticoagulants
c. Once anticoagulation takes full effect
d. Any time, if suspected

 

 

3. All the following is true regarding brain MRI abnormalities following a seizure, except…
a. They are observed following status epilepticus only
b. They are often unilateral
c. They may occasionally be associated with leptomeningeal contrast enhancement
d. Abnormalities may persist for weeks or months

 

 

4. Which of the following is included in the quick SOFA criteria for sepsis?
a. Heart rate
b. Serum lactate
c. Temperature
d. Confusion

 

 

5. All of the following regarding iron replacement and infection is true, except…
a. Many common pathogens such as E.coli and Staphylococcus sp. depend on iron for their growth
b. Association of IV iron replacement and increased risk of infection has not been consistently demonstrated
c. A single randomized-controlled trial of IV iron in patients with active infection failed to show increased infectious complications or mortality with replacement
d. All of the above is true

 

True or false

1. Constipation may precede typical manifestations of Parkinson’s disease by 10 years or more
2. Urine Legionella antigen testing is >90% sensitive in legionnaire’s disease
3. Spontaneous coronary artery dissection should be particularly suspected in males over 50 years of age presenting with acute chest pain
4. Urine dipstick for detection of blood is >90% sensitive in identifying patients with rhabdomyolysis and CK >10,000 U/L
5. Diabetes is an independent risk factor for venous thrombophlebitis

 

 

 

Answer key
Multiple choice questions:1=d; 2=a;3=a;4=d;5=c
True or false questions:1=True; 2,3,4,5=False

 

200 pearls and counting! Take the Pearls4Peers quiz #2!

Can a seizure cause abnormalities on the brain MRI?

Yes it can, and the MRI abnormalities could represent seizure’s effects on the brain, not the seizure’s structural cause. Seizure-related MRI changes are often associated with status epilepticus, but have also been reported in complex partial status epilepticus.1,2

T2-weighted MRI images may show increased signal intensity at the cortical gray matter, subcortical white matter, or hippocampus. The MRI changes are unilateral about one-half of the cases, while in about 8% of patients leptomeningeal contrast-enhancement may be observed. Partial simple and complex seizures are associated with hippocampal involvement.3

The increased signal intensity following seizures is thought to be due to increased metabolism at the epileptogenic area, which in turn results in increased oxygen consumption, hypoxia, hypercarbia, lactic acidosis, and ultimately vasodilation and edema.

Reversibility of MRI changes following seizures has been noted between 15 and 150 days (average, 62 days). A structural abnormality is more likely the cause of a seizure when the MRI changes do not resolve during this period.3 Therefore, seizure-induced brain-MRI abnormalities remain a diagnosis of exclusion.

References

  1. Kim JA, Chung JI, Yoon PH, et al. Transient MR signal changes in patients with generalized tonicoclonic seizure or status epilepticus: periictal diffusion-weighted imaging. Am J Neuroradiol 2001; 22:1149–1160 http://www.ajnr.org/content/22/6/1149.long
  2. Henry TR, Brunberg DI, Pennell PB, et al. Focal cerebral magnetic resonance changes associated with partial status epilepticus. Epilepsia 1994; 35:35–41 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.916.5237&rep=rep1&type=pdf
  3. Cianfoni A, Caulo M, Cerase A, et al. Seizure-induced brain lesions: a wide spectrum of variably reversible MRI abnormalities. Eur J Radiol. 2013; 82(11):1964-72. http://www.ejradiology.com/article/S0720-048X(13)00271-4/fulltext

 

Contributed by Johan H.L. Boneschansker, MD, Mass General Hospital, Boston, MA.

Can a seizure cause abnormalities on the brain MRI?

Is prolactin level useful in determining whether my patient with loss of consciousness suffered a seizure?

It depends on the timing of your patient’s presentation!

It is generally held that serum prolactin level peaks within 10-20 min after a generalized tonic-clonic or complex partial seizure and returns to baseline within 2-6 h. Even then, its sensitivity is no more than 50%-60% for these types of seizures.  Elevated PL is also seen in 60%-80% of patients with syncope.1

A report by the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology (2006) concluded that “elevated serum prolactin assay, when measured in the appropriate clinical setting at 10-20 min after a suspected event, is a useful adjunct for the differentiation of generalized tonic-clonic or complex partial seizure from psychogenic non-epileptic seizure among adults or older children (Level B).2 

In contrast, reports of PL increasing for up to 6 h after epileptic seizure or not reaching baseline for 12-18 h can also be found in the literature.3

Although the mechanism for elevation of PL in certain seizures is unknown,  one hypothesis proposes that prolactin is secreted due to the interference with the inhibitory control of hypothalamus by the electrical perturbation of this part of the brain.4  

References

  1. Nass RD, Sassen R, Elger CE. The role of postictal laboratory blood analyses in the diagnosis and prognosis of seizures. Seizure 2017;47:51-65. https://www.ncbi.nlm.nih.gov/pubmed/28288363
  2. Chen DK, So YT, Fisher RS. Is prolactin a clinically useful measure of epilepsy? Epilepsy Currents 2006;6:78-79. https://www.ncbi.nlm.nih.gov/pubmed/16157897
  3. Siniscalchi A, Gallelli L, Mercuri NB, et al. Serum prolactin levels in repetitive temporal epileptic seizures. Eur Rev Med Pharmacol Sci 2008;12:365-368. https://www.ncbi.nlm.nih.gov/pubmed/19146198
  4. Collins WCJ, Lanigan O, Callaghan N. Plasma prolactin concentrations following epileptic and pseudoseizures. J Neurol Neurosurg Psych 1983; 46:505-8. http://jnnp.bmj.com/content/jnnp/46/6/505.full.pdf

If you liked this pearl, sign up under menu and receive future pearls right into your mailbox!

 

Is prolactin level useful in determining whether my patient with loss of consciousness suffered a seizure?