Why is my hospitalized patient with alcohol withdrawal syndrome so thrombocytopenic?

Although thrombocytopenia associated with chronic alcoholism may be related to complications of cirrhosis (eg, platelet sequestration in spleen due to portal hypertension, poor platelet production, and increased platelet destruction) (1), it may also occur in the absence of cirrhosis due to the direct toxic effect of alcohol on platelet production and survival (2).

 
In a prospective study of patients ingesting the equivalent of a fifth or more daily of 86 proof whiskey admitted for treatment of alcohol withdrawal—without evidence of severe liver disease, infection or sepsis— 81% had initial platelet counts below 150,000/µl, with about one-third having platelet counts below 100,000 µl (as low as 24,000/ul) (3).
In most patients, 2-3 days elapsed before the platelet count began to rise significantly, peaking 5-18 days after admission. Others have also reported that platelet counts rise within 5-7 days and normalize in a few weeks after alcohol withdrawal (1); bleeding complications have been uncommon in this setting.
Perhaps even more intriguing is the report of the association between thrombocytopenia in early alcohol withdrawal and the development of delirium tremens or seizures (sensitivity and specificity ~ 70%, positive predictive value less than 10% but with a negative predictive value of 99%) (4)! In fact, the authors suggested that, if their findings are corroborated, a normal platelet count could potentially be used to identify patients at low risk of alcohol withdrawal syndrome and therefore outpatient therapy. 

References
1. Mitchell O, Feldman D, Diakow M, et al. The pathophysiology of thrombocytopenia in chronic liver disease. Hepatic Medicine: Evidence and Research 2016;8 39-50. https://www.dovepress.com/the-pathophysiology-of-thrombocytopenia-in-chronic-liver-disease-peer-reviewed-article-HMER

2. Cowan DH. Effect of alcoholism on hemostasis. Semin Hematol 1980;17:137-47. https://www.ncbi.nlm.nih.gov/pubmed/6990498

3. Cowan DH, Hines JD. Thrombocytopenia of severe alcoholism. Ann Intern Med 1971;74:37-43. http://annals.org/aim/article-abstract/685069/thrombocytopenia-severe-alcoholism.

4. Berggren U, Falke C, Berglund KJ, et al. Thrombocytopenia in early alcohol withdrawal is associated with development of delirium tremens or seizures. Alcohol & Alcoholism 2009;44:382-86. https://www.ncbi.nlm.nih.gov/pubmed/19293148

If you like this pearl, sign up under menu and receive future pearls right into your mailbox!

Why is my hospitalized patient with alcohol withdrawal syndrome so thrombocytopenic?

My elderly patient is scheduled to undergo elective surgery? Is there an objective “stress test for the brain” that may predict postoperative delirium?

Possibly, in the near future! Although the pathophysiology of postoperative delirium (POD) is not fully understood, a recently proposed conceptual model of delirium may provide a basis for preoperative neurophysiologic testing1.

According to this model, delirium is a “consequence of the breakdown in brain network dynamics” precipitated by insults or stressors (eg, surgery) in persons with low brain resilience ie, low connectivity between brain regions and/or deficient neuroplasticity (the ability of brain to reorganize itself by forming new neural connections).  

As expected,  patients with strong baseline connectivity and optimal neuroplasticity would not be expected to have POD, whereas those with weakened connectivity (eg baseline cognitive dysfunction) and/or suboptimal neuroplasticity (eg due to aging) may be at higher risk. Transcranial magnetic stimulation (TMS)  is considered a powerful tool that measures the connectivity and plasticity of the brain through induced perturbation.  When applied in repetitive trains, TMS produces changes in cortical excitability that can be measured using electromyography and EEG,  and is thought to have the ability to assess neuroplasticity 2. If proven effective in predicting POD, it could revolutionize preoperative risk assessment in the elderly! Stay tuned!

 

Reference

  1. Shafi MM, Santarnecchi E, Fong TG, et al. Advancing the neurophysiological understanding of delirium. J Am Geriatr Soc 2017. DOI:10.1111/jgs.14748.
  2. Pascual-Leone A, Freitas C, Oberman L, et al. Characterizing brain cortical plasticity and network dynamics across the age-span in health and disease with TMS-EEG and TMS-fMRI. Brain Topogr 2011, 24:302-15.
My elderly patient is scheduled to undergo elective surgery? Is there an objective “stress test for the brain” that may predict postoperative delirium?

How exactly do urinary tract infections (UTIs) cause delirium in my elderly patients?

 UTIs are often considered in the differential diagnosis of causes of delirium in the elderly. Though largely speculative, 2 possible pathophysiologic basis for this association are suggested:1-3

  •  Direct brain insult (eg, in the setting of sepsis/hypotension)
  • Indirect aberrant stress response, involving cytokines/inflammatory pathways,  hypothalamic-pituitary-adrenal [HPA] axis and sympathetic nervous system (SNS). One or both pathways can interact with the neurotransmitter and intracellular signal transduction systems underlying delirium in the brain, which may already be impaired in the elderly due to age-related or other pathologic changes.

The indirect aberrant stress pathway suggests that not only pain and discomfort (eg from dysuria) can contribute to delirium but UTI-associated circulating cytokines may also cause delirium.  Indeed, a large study of older adults undergoing elective surgery found a significant association between delirium postoperatively (postop day 2) and serum proinflammatory cytokine levels such as IL-6. 4  

The corollary is that bacteriuria is unlikely to be associated with delirium in the absence of significant systemic inflammatory response, pain or discomfort.

 

References

1.Trzepacz P, van der Mast R. The neuropathophysiology of delirium. In Lindesay J,  Rockwood K, Macdonald A (Eds.). Delirium in old age, pp. 51–90. Oxford University Press, Oxford , 2002.

2.Flacker JM, Lipsitz LA. Neural mechanisms of delirium: current hypotheses and evolving concepts. J Gerontol A Biol Sci Med Sci. 1999; 54: B239–B246 https://www.ncbi.nlm.nih.gov/pubmed/10411009

3. Maclullich AM, Ferguson KJ, Miller T, de Rooij SE, Cunningham C. Unravelling the pathophysiology of delirium: a focus on the role of aberrant stress responses. J Psychosom Res. 2008;65:229–38. https://www.ncbi.nlm.nih.gov/pubmed/18707945

4. Vasunilashom SM, Ngo L, Inouye SK, et al. Cytokines and postoperative delirium in older patients undergoing major elective surgery. J Gerontol A Biol Sci Med Sci 2015;70:1289-95. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4817082/pdf/glv083.pdf

Contributed by Henrietta Afari MD, Mass General Hospital, Boston, MA

How exactly do urinary tract infections (UTIs) cause delirium in my elderly patients?