Is meropenem a good choice of antibiotic for treatment of my patient’s intraabdominal infection involving enterococci?

Although meropenem is a broad spectrum antibiotic that covers many gram-negative and gram-positive organisms as well as anaerobes, its activity against enterococci is generally poor and leaves much to be desired.

In a study of ampicillin-sensitive E. faecalis isolates from hospitalized patients, only 36% of isolates were considered susceptible (MIC≤4 mg/L); activity against E. faecium isolates was similarly poor.1 Several other studies have reported the suboptimal activity of meropenem against both E. faecalis and E. faecium, 2-4 with susceptibility rates as low as 8.6% depending on the MIC break point used.3

A popular textbook and a handbook on infectious diseases also do not recommend the use of meropenem for treatment of enterococcal infections. 5,6

Of interest, the package insert states that meropenem is indicated for complicated skin and soft tissue infections due to a variety of organisms, including E. faecalis (vancomycin-susceptible isolates only), but not for complicated intra-abdominal infections or meningitis due this organism.7

In our patient with intraabdominal infection,  we may consider piperacillin-tazobactam instead.  Piperacillin-tazobactam is a broad spectrum antibiotic with excellent coverage against anaerobes and ampicillin-susceptible E. faecalis.1,8  

 

References

  1. Endtz HP, van Dijk WC, Verbrugh HA, et al. Comparative in-vitro activity of meropenem against selected pathogens from hospitalized patients in the Netherlands. J Antimicrob Chemother 1997;39:149-56. https://www.ncbi.nlm.nih.gov/pubmed/9069534
  2. Pfaller MA, Jones RN. A review of the in vitro activity of meropenem and comparative antimicrobial agents tested against 30,254 aerobic and anaerobic pathogens isolated world wide. Diag Microbiol Infect Dis 1997;28:157-63. https://www.ncbi.nlm.nih.gov/pubmed/9327242
  3. Hallgren A, Abednazari H, Ekdahl C, et al. Antimicrobial susceptibility patterns of enterococci in intensive care units in Sweden evaluated by different MIC breakpoint systems. J Antimicrob Chemother 2001;48:53-62. https://www.ncbi.nlm.nih.gov/pubmed/11418512
  4. Hoban DJ, Jones RN, Yamane N, et al. In vitro activity of three carbapenem antibiotics comparative studies with biapenem (L-627), imipenem, and meropenem against aerobic pathogens isolated worldwide. Diag Microbiol Infect Dis 993;17:299-305.https://www.ncbi.nlm.nih.gov/pubmed/8112045
  5. Chambers HF. Carbapenem and monobactams. In Mandell GL et al. eds. Principles and practice of infectious diseases. 2010, pp 341-45.
  6. Cunha CB, Cunha BA. Antibiotic essentials. 2017, pp 689-91.
  7. Meropenem.http://online.lexi.com/lco/action/doc/retrieve/docid/patch_f/7253?searchUrl=%2Flco%2Faction%2Fsearch%3Fq%3Dmeropenem%26t%3Dname
  8. Perry CM, Markham A. Piperacillin/tazobactam. Drugs 1999;57:805-43. https://link.springer.com/article/10.2165%2F00003495-199957050-00017

If you liked this post, sign up under MENU and catch future pearls straight into your mailbox!

Is meropenem a good choice of antibiotic for treatment of my patient’s intraabdominal infection involving enterococci?

Is the combination of piperacillin-tazobactam and vancomycin (PT-V) nephrotoxic?

Despite its widespread use for over 20 years, PT-V has only recently been linked to higher risk of AKI when compared to vancomycin+/- other β-lactams, particularly cefepime1,2

A 2016 meta-analysis of 14 observational studies reported an AKI incidence ranging from 11%-48.8% for PT-V (used for ≥48 h in most studies), with an adjusted O.R. of 3.11 (95% C.I. 1.77-5.47) when compared to other vancomycin treatment groups1.  Of note, nephrotoxicity associated with PT-V appears to occur earlier than the comparative groups (median 3 days vs 5 days of therapy, respectively), with the highest daily incidence observed on days 4 and 52.

Although the exact mechanism(s) of nephrotoxicity in patients receiving PT-V is unknown, both piperacillin and vancomycin have been implicated in acute renal tubular dysfunction/necrosis and acute interstitial nephritis3-5.

Collectively, these findings are only a reminder to be more judicious in the selection and duration of treatment of even “safe” antibiotics.

Liked this post? Get the app for your smart phone and sign up under MENU and catch future pearls right into your mailbox!

 

References

  1. Hammond DA, Smith MN, Chenghui Li, et al. Systematic review and meta-analysis of acute kidney injury associated with concomitant vancomycin and piperacillin/tazobactam. Clin Infect Dis 2016 ciw811.doi:10.1093cid/ciw811.https://academic.oup.com/cid/article/64/5/666/2666529
  2. Navalkele B, Pogue JM, Karino S, et al. Risk of acute kidney injury in patients on concomitant vancomycin an dpiperacillin-tazobactam compared to those on vancomycin and cefepime. Clin Infect Dis 2017;64:116-123. https://academic.oup.com/cid/article/64/2/116/2698878
  3. Hayashi T, Watanabe Y, Kumano K, et al. Pharmacokinetic studies on the concomitant administration of piperacillin and cefazolin, and piperacillin and cefoperazone in rabbits. J Antibiotics 1986; 34:699-712. https://www.ncbi.nlm.nih.gov/pubmed/3733519
  4. Polderman KH, Girbes ARJ. Piperacillin-induced magnesium and potassium loss in intensive care unit patients. Intensive Care Med 2002;28:530-522. https://link.springer.com/article/10.1007/s00134-002-1244-3
  5. Htike NL, Santoro J, Gilbert B, et al. Biopsy-proven vancomycin-associated interstitial nephritis and acute tubular necrosis. Clin Exp Nephrol 2012;16:320-324. https://link.springer.com/article/10.1007/s10157-011-0559-1
Is the combination of piperacillin-tazobactam and vancomycin (PT-V) nephrotoxic?

What is the clinical relevance of “SPICE” organisms?

“SPICE” often stands for the following bacterial species: Serratia spp, Providencia spp, indole-positive Proteae (e.g. Proteus spp. [not mirabilis], Morganella spp., Providencia spp.), Citrobacter spp., and Enterobacter spp.  Some have also included Pseudomonas spp (“P”).

These organisms (as well as Acinetobacter spp., at times “A” in SP”A”CE organisms) often have inducible chromosomal AmpC ß-lactamase genes that may be derepressed during therapy, conferring in vivo ß-lactam resistance despite apparent sensitivity in vitro (1,2). Because AmpC genes in clinical isolates are not routinely screened for in the laboratory, the following treatment approach to these organisms is often adopted (1).

Third generation cephalosporins (e.g. ceftriaxone and ceftazidime) are usually avoided irrespective of in vitro susceptibility. For less serious infections (e.g. urinary tract infections) or severe infections in carefully monitored clinically stable patients, piperacillin-tazobactam and cefepime in particular may be used due to their lower risk of induced resistance. For severe infections (e.g. pneumonia and bacteremia) in seriously ill patients, carbapenems (e.g. meropenem, imipenem-cilastatin) are often the drugs of choice. 

A small retrospective study of patients with infection due to SPICE organisms (about 50% with bacteremia) found cefepime to be as effective as meropenem, but cautioned its use when adequate source control has not been achieved (3). Fluroroquinolones and aminoglycosides may also be considered.

References

  1. MacDougall C. Beyond susceptible and resistant, part I: treatment of infections due to Gram-negative organisms with inducible ß-lactamases. J Pediatr Pharmacol Ther 2011;16:23-30. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3136230/
  2. Jacoby GA. AmpC ß-lactamases. Clin Microbiol Rev 2009;22:161-182. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2620637/
  3. Tamma PD, Girdwood SCT, Gopaul R, et al. The use of cefepime for treating AmpC ß-lactamase-producing Enterobacteriaceae. Clin Infect Dis 2013;57:781-8. https://academic.oup.com/cid/article/57/6/781/330020

Contributed in part by Avi Geller, Medical Student, Harvard Medical School, Boston, MA

 

If you like this pearl, sign up under menu and receive future pearls right into your mailbox!

What is the clinical relevance of “SPICE” organisms?