When should I consider Pseudomonas aeruginosa as a cause of respiratory tract infection in my hospitalized patient with COPD exacerbation?

The most consistent risk factor for isolation of P. aeruginosa from sputum of adults with COPD is the presence of more advanced pulmonary disease (eg, FEV-1 <35%-50% of predicted value) or functional impairment (1-5).

 

Chronic corticosteroid use is also frequently cited as an important predictor of respiratory tract colonization/infection due to P. aeruginosa in patients with COPD, while the data on antibiotic use during the previous months have been conflicting (2,4). Other risk factors may include prior isolation of P. aeruginosa and hospital admission during the previous year (1).

 
A prospective study of patients hospitalized for COPD exacerbation found P. aeruginosa to be the most frequently isolated organism, growing from 26% of validated sputum samples at initial admission, followed by Streptococcus pneumoniae and Hemophilus influenzae. In the same study, bronchiectasis (present in up to 50% of patients with COPD) was not shown to be independently associated with the isolation of P. aeruginosa (1).

 
Of interest, compared to the patients without P. aeruginosa, patients hospitalized for acute exacerbation of COPD and isolation of P. aeruginosa from sputum have significantly higher mortality: 33% at 1 year, 48% at 2 years and 59% at 3 years (5).

 

Liked this post? Download the app on your smart phone and sign up under Menu to catch future pearls straight into your inbox!
References
1. Garcia-Vidal C, Almagro P, Romani V, et al. Pseudomonas aeruginosa in patients hospitalized for COPD exacerbation: a prospective study. Eur Respir J 2009;34:1072-78. https://www.ncbi.nlm.nih.gov/pubmed/19386694
2. Murphy TF. Pseudomonas aeruginosa in adults with chronic obstructive pulmonary disease. Curr Opin Pulm Med 2009;15:138-42. https://www.ncbi.nlm.nih.gov/pubmed/19532029
3. Miravitlles M, Espinosa C, Fernandez-Laso E, et al. Relationship between bacterial flora in sputum and functional impairment in patients with acute exacerbations of COPD. Chest 1999;116:40-6. https://www.ncbi.nlm.nih.gov/pubmed/10424501
4. Murphy TF, Brauer AL, Eschberger K, et al. Pseudomonas aeruginosa in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2008;177:853-60. https://www.ncbi.nlm.nih.gov/pubmed/18202344
5. Almagro P, Silvado M, Garcia-Vidal C, et al. Pseudomonas aeruginosa and mortality after hospital admission for chronic obstructive pulmonary disease. Respiration 2012;84:36-43. https://www.karger.com/Article/FullText/331224

 

 

When should I consider Pseudomonas aeruginosa as a cause of respiratory tract infection in my hospitalized patient with COPD exacerbation?

My patient with COPD has new clubbing of his finger tips. What is the mechanism of clubbing?

The mechanism behind digital clubbing has yet to be fully elucidated, with hypotheses ranging from a circulating vasodilator, tissue hypoxia, a neurocirculatory reflex, and genetic factors. 1 Although hypoxemia is often cited as a cause of clubbing, it is often absent in the presence of clubbing and many patients with hypoxemia do not have clubbing.

A potentially unifying pathophysiologic mechanism of clubbing revolves around platelet clustering and associated growth factor release. 2.3 Platelet clumps/megakaryocytes—either because of circumvention of the lung capillary network (eg, in intracardiac shunts or lung cancer) or increased production (eg, in left-sided endocarditis or chronic inflammatory conditions)—may wedge in the fine vasculature of distal fingertips or toes and cause release of platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF).

Together, PDGF and VEGF promote neovascularization, increase vessel dilation and permeability, and modify connective tissue to create the distinct club-like appearance. Local hypoxic condition from reduced capillary perfusion is thought to further stimulate the release of these growth factors.

Potential causes of clubbing in our patient include lung cancer, interstitial lung disease, bronchiectasis, core pulmonale and secondary polycythemia, among many others. 1

Fun Fact: Did you know that clubbing, also known as “Hippocratic finger”, was first described by Hippocrates in a patient with chronic empyema (don’t ask how chronic empyema was diagnosed in 400 BC!)?1

 

References

  1. McPhee SJ. Clubbing. In: Walker HK, Hall WD, Hurst JW, editors. Clinical Methods: The History, Physical, and Laboratory Examinations. 3rd edition. Boston: Butterworths;1990. Chapter 44. Available from https://www.ncbi.nlm.nih.gov/books/NBK366/
  2. Dickinson CJ, Martin JF. Megakaryocytes and platelet clumps as the cause of finger clubbing. Lancet 1987;2:1434-4. https://www.ncbi.nlm.nih.gov/pubmed/2891996/ 
  3. Atkinson S, Fox SB. Vascular endothelial growth factor (VEGF)-A and platelet-derived growth factor (PDGF) play a central role in the pathogenesis of digital clubbing. J Pathol 2004;203:721-8. https://www.ncbi.nlm.nih.gov/pubmed/15141388

 

Contributed by George Bugarinovic, Medical Student, Harvard Medical School

My patient with COPD has new clubbing of his finger tips. What is the mechanism of clubbing?

How does azithromycin (AZ) benefit patients with severe COPD or cystic fibrosis (CF)?

AZ is a macrolide antibiotic which interferes with bacterial protein synthesis by binding to the 50S ribosomal subunit. It is often used to treat acute respiratory tract infections due to Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, as well as Mycoplasma, Chlamydia, and Legionella sp1. Although it has no in vitro activity against many aerobic gram-negative bacilli such as Pseudomonas aeruginosa, its chronic use has often been associated with a significant reduction in the frequency of disease exacerbations in patients with chronic bronchiectasis and colonization due to this organism, including patients with COPD or CF1-3.

Because P. aeruginosa is invariably macrolide-resistant, the beneficial effect of AZ in chronically infected or colonized patients must be due to factors other than its direct effect on bacterial replication.  Several mechanisms have been invoked including: 1. Inhibition of quorum-sensing dependent virulence factor and biofilm production 2.Blunting of host inflammatory response (eg, ↑IL-10, and ↓ IL-1ß, IL-6, IL-8, TNF-α, and ↓ chemotaxis); and 3. Enhanced antiviral response1.

The latter finding is quite unexpected but AZ appears to augment interferon response to rhinovirus in bronchial cells of COPD patients3.  With respiratory viruses (including rhinoviruses) causing 20-55% of all COPD exacerbations, perhaps this is another way AZ may help the host! Who would have thought!!

Liked this post? Download the app on your smartphone and sign up under MENU to catch future pearls straight in your inbox, all for free!

References

  1. Vos R, Vanaudenaerde BM, Verleden SE, et al. Anti-inflammatory and immunomodulatory properties of azithromycin involved in treatment and prevention of chronic lung allograft rejection. Transplantation 2012;94:101-109.
  2. Cochrane review. Treatment with macrolide antibiotics for people with cystic fibrosis and chronic chest infection. Nov 14, 2012. http://www.cochrane.org/CD002203/CF_treatment-with-macrolide-antibiotics-for-people-with-cystic-fibrosis-and-chronic-chest-infection
  3. Menzel M, Akbarshahi H, Bjermer L, et al. Azithromycin induces anti-viral effects in cultured bronchial epithelial cells from COPD. Scientific Reports 2016; 6:28698. DOI:10.1038/srep 28698.

 

 

How does azithromycin (AZ) benefit patients with severe COPD or cystic fibrosis (CF)?

How should patients with hospital-associated pneumonia (HAP) be empirically treated under the 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society?

Although empiric selection of antibiotics should be based on the local distribution of pathogens associated with HAP and their antimicrobial susceptibilities, routine coverage of Staphylococcus aureus (not necessarily methicillin-resistant S. aureus [MRSA]) and Pseudomonas aeruginosa or other gram-negative bacilli is recommended1.

In patients not at high risk of mortality (including ventilatory support and septic shock) or risk for MRSA (i.e.prior IV antibiotic use within 90 days, hospitalization in a unit where >20% of S. aureus isolates are MRSA or the prevalence of MRSA is unknown), piperacillin-tazobactam, cefepime, levofloxacin, imipenem or meropenem alone is suggested.

In patients not at high risk of mortality but with factors that increase the likelihood of MRSA, piperacillin-tazobactam, cefepime/ceftazidime, ciprofloxacin/levofloxacin, imipenem/meropenem, or aztreonam, plus vancomycin or linezolid should be considered.

In patients at high risk of mortality or receipt of IV antibiotics during the prior 90 days vancomycin or linezolid plus 2 of the following should be used: piperacillin-tazobactam, cefepime/ceftazidime, ciprofloxacin/levofloxacin, imipenem/meropenem, amikacin/gentamicin/tobramycin, or aztreonam are recommended (avoid double β-lactams).

In patients with structural lung disease increasing the risk of gram-negative infections (ie, bronchiectasis or cystic fibrosis), double anti-pseudomonal coverage is recommended.

 

Reference

  1. Kalil AC, Metersky ML, Klompas M, et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis, Advance Access published July 14, 2016.
How should patients with hospital-associated pneumonia (HAP) be empirically treated under the 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society?

What is the sensitivity of nose swabs in detecting methicillin-resistant Staphylococcus aureus (MRSA) pneumonia?

In MRSA pneumonia, the sensitivity of nasal swab PCR may vary from as low as 24.2% to 88% (1-3). A 2018 meta-analysis found an overall sensitivity of 70.9% (community-acquired pneumonia/healthcare-associated pneumonia [HCAP] 85%, ventilator-associated pneumonia 40%) with overall negative predictive value of 96.5% (based on an overall MRSA pneumonia prevalence of 10%) (4). 

A single center  study involving  patients with possible HCAP and a low clinical pulmonary infection score (CPIS) — for whom antibiotics may not be necessary anyway (5)—suggested that discontinuation of empiric vancomycin in patients without an adequate respiratory culture and a negative nose and throat culture may be reasonable (6).

However, a prospective study of ICU patients concluded that “clinicians cannot reliably use the results of initial negative MRSA nasal swab results to withhold empirical MRSA coverage from patients who otherwise are at risk for MRSA infection” (3).

The previously cited 2018 meta-analysis study (4) cautions against use of MRSA screening in patients with structural lung disease (eg, cystic fibrosis or bronchiectasis) because colonization may be more frequent in the lower respiratory tract in these patients and screening tests may therefore be discordant (4).

Collectively, the available data suggest that it is reasonable to use a negative MRSA screen to help exclude pneumonia due to this pathogen in patients in whom MRSA infection is not highly suspected or those who are not severely ill.

 

References

  1. Rimawi RH, Ramsey KM, Shah KB, et al. Correlation between methicillin-resistant Staphylococcus aureus nasal sampling, and S. aureus pneumonia in the medical intensive care unit. Infect Control Hosp Epidemiol 2014;35:590-92. https://www.ncbi.nlm.nih.gov/pubmed/24709733
  2. Dangerfield B, Chung A, Webb B, et al. Predictive value of methicillin-resistant Staphylococcus aureus (MRSA) nasal swab PCR assay for MRSA pneumonia. Antimicrob Agents Chemother 2014;58:859-64. https://www.ncbi.nlm.nih.gov/pubmed/24277023
  3. Sarikonda KV, Micek ST, Doherty JA, et al. Methicillin-resistant Staphylococcus aureus nasal colonization is a poor predictor of intensive care unit-acquired methicillin-resistant Staphylococcus aureus infections requiring antibiotic treatment. Crit Care Med 2010;38:1991-1995. https://www.ncbi.nlm.nih.gov/pubmed/20683260
  4. Parente DM Cunha CB Mylonakis E et al. The clinical utility of methicillin-resistant Staphylococcus aureus (MRSA) nasal screening to rule out MRSA pneumonia: A diagnostic meta-analysis with antimicrobial stewardship implications. Clin Infect Dis 208;67:1-7.
  5. Napolitano LM. Use of severity scoring and stratification factors in clinical trials of hospital-acquired and ventilator-associated pneumonia. Clin Infect Dis 2010;51:S67-S80. https://www.ncbi.nlm.nih.gov/pubmed/20597675
  6. Boyce JM, Pop O-F, Abreu-Lanfranco O, et al. A trial of discontinuation of empiric vancomycin therapy in patients with suspected methicillin-resistant Staphylococcus aureus health care-associated pneumonia. Antimicrob Agents Chemother 2013;57:1163-1168. http://aac.asm.org/content/57/3/1163.full.pdf
What is the sensitivity of nose swabs in detecting methicillin-resistant Staphylococcus aureus (MRSA) pneumonia?