How common are acute kidney abnormalities in patients with Covid-19?

Although early reports suggested a low incidence (3-9%) of AKI among Covid-19 patients, more recent studies have shown higher frequencies of renal abnormalities, including albuminuria and hematuria (1).

 
A study of 59 patients with Covid-19 reported that 34% had “massive albuminuria” on the first day of admission, and 63% developed proteinuria during their hospitalization (2 [unpublished]). BUN was elevated in 27% of patients and in two-thirds of those who died. In another study involving 710 patients with Covid-19, nearly one-half had proteinuria and hematuria and a quarter had hematuria on admission. Overall, around 15% of patients had an elevated serum creatinine and BUN (3).

 
Possible explanations for renal manifestations of Covid-19 include sepsis, cytokine storm, secondary infections, and direct cellular injury due to the virus itself (1, 4). Interestingly, SARS-CoV-2 has been reportedly isolated from the urine sample of a Covid-19 patient (1). This should not be surprising given the presence of ACE2 receptors in the proximal tubules and, at lower concentrations, in the glomeruli (5).

 
An autopsy study of patients with Covid-19 found evidence of diffuse proximal tubule injury with the loss of brush border, vascular degeneration but no vasculitis, interstitial inflammation or hemorrhage. Coronavirus particles were found in the tubular epithelium and podocytes (6).

 
Bonus Pearl: Did you know that proteinuria (2-3+) and hematuria are independent risk factors for in-hospital mortality (3)?

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References
1. Naicker S, Yang CW, Hwang SJ. The novel coronavirus 2019 epidemic and kidneys. Kidney International 2020, May. DOI: https://doi.org/10.1016/j.kint.2020.03.001
2. Li Z, Wu M, Guo J, et al. Caution on kidney dysfunctions of 2019-nCoV patients . medRxiv 2020.02.08.20021212
3. Cheng Y, Luo R, Wang K, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney International 2020;97:829-38.
4. Su H, Yang M, Wan C, et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney International 2020, April 9. https://www.sciencedirect.com/science/article/pii/S0085253820303690  
5. Mizuiri S, Ohashi Y. ACE and ACE2 in kidney disease. World J Nephrol 2015;4:74-82. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4317630/
6. Cheng N, Zhou M, Dong X, et al. Kidney impairment is associated with in-hospital death of COVID-19 patients. medRxive 2020 .0218.20023242. https://doi.org/10.1101/2020.02.18.20023242.

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

 
.

How common are acute kidney abnormalities in patients with Covid-19?

Could measurement of urinary albumin-protein ratio be useful in my patient with renal insufficiency and proteinuria?

A spot urine test for determination of albumin-protein ratio (uAPR) may be useful in distinguishing glomerular vs tubulointerstitial source of proteinuria. A low (<0.4) uAPR, defined as urinary albumin to creatinine ratio(uACR)/urinary protein to creatinine ratio (uAPR) is more suggestive of a tubulointerstitial renal disease and less suggestive of glomerular pathology.1-3  

A 2012 study involving simultaneous measurements of urinary albumin and total protein in over 1000 proteinuric patients found a relatively high (0.84) area under curve (AUC) in a receiver operating characteristic curve analysis for uAPR (vs 0.74 for uACR and 0.54 for uPCR) in discriminating between tubular and non-tubular proteinuria pattern on urine protein electrophoresis and immunofixation. An uAPR cut-off of <0.4 was found to be 88% sensitive and 99% specific for the diagnosis of primary tubulointerstitial disorders on renal biopsy.1  

Due to the limitations of this study (including a relatively small subset of patient who had renal biopsy), a related editorial concluded that a low uAPR gives a “reasonable prediction of a tubular electrophoretic proteinuria”, but that it warrants further validation. Nevertheless, uAPR could potentially be useful in patients with moderate proteinuria (>300 mg/day to <3 g/day) who have not had renal biopsy and  where assessment of likelihood of tubulointerstitial vs glomerular source of proteinuria is desired.3 Interestingly, the utility of uAPR in predicting non-glomerular source of hematuria has also been reported.4

Bonus pearl: Did you know that the negatively-charged glomerular capillary wall repels negatively charged albumin thus preventing its filtration (charge-barrier) (5)?  

Liked this post? Download the app on your smart phone, and sign up below to catch future pearls right into your inbox, all for free! Thank you!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. Smith ER, Cai MMX, McMahon LP, et al. The value of simultaneous measurement of urinary albumin and total protein in proteinuric patients. Nephrol Dial Transplant 2012;27:1534-41. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4035283/
  2. Fraser SDS, Roderick PJ, McIntyre NJ, et al. Assessment of proteinuria in patients with chronic kidney disease stage 3: albuminuria and non-albumin proteinuria. PLOS ONE 2014;9:e98261. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4035283/pdf/pone.0098261.pdf
  3. Ellam T, Nahas ME. Urinary albumin to protein ratio: more of the same or making a difference. Nephrol Dial Transplant 2012;27:1293-96. https://www.ncbi.nlm.nih.gov/pubmed/22362784
  4. Ohisa N, Yoshida K, Matsuki R, et al. A comparison of urinary albumin-total protein ratio to phase-contrast microscopic examination of urine sediment for differentiating glomerular and nonglomerular bleeding. Am J Kidney Dis 2008;52:235-41. https://www.ajkd.org/article/S0272-6386(08)00828-7/pdf
  5. Venkat KK. Proteinuria and microalbuminuria in adults: significance, evaluation, and treatment. S Med J 2004;97:969-79. https://internal.medicine.ufl.edu/files/2012/07/5.18.05.04.-Proteinuria-review.pdf
Could measurement of urinary albumin-protein ratio be useful in my patient with renal insufficiency and proteinuria?

What is the utility of urine dipstick for blood in diagnosing rhabdomyolysis?

Although the dipstick method of detecting blood in the urine is convenient, it cannot differentiate between hemoglobin, myoglobin, or red blood cells. 1

Several reviews suggest that urine myoglobin is unstable with subpar performance in rhabdomyolysis1, often defined as creatine kinase (CK) elevation 5 times the upper limit of normal in the proper context (eg, crush injury, hypoxic/ischemic or drug injury). A sensitivity of 71% and a specificity of 54% for urine hemoglobin by dipstick, and a sensitivity of 25% and specificity of 75%  for urine myoglobin  has been reported in patients with serum CK >10,000 U/L. 3  

So while a positive dipstick for blood with few or no RBCs in the urine may make us think about rhabdomyolysis, its absence should not be used to exclude it in a susceptible host.

Bonus Pearl: Did you know that consumption of quail has been associated with rhabdomyolysis, possibly due to their feeding on poisonous plants such as hemlock?

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 

References

  1. Rodriguez-Capote Karina, Balion CM, Hill SA, et al. Utility of urine myoglobin for the prediction of acute renal failure in patients with suspected rhabdomyolysis: A systematic review. Clin Chem 2009;55:2190-97. https://www.ncbi.nlm.nih.gov/pubmed/19797717
  2. Nance JR, Mammen AL. Diagnostic evaluation of rhabdomyolysis. Muscle Nerve 2015;51:793-810. https://www.ncbi.nlm.nih.gov/pubmed/25678154
  3. Grover DS, Atta MG, Eustace JA, et al. Lack of clinical utility of urine myoglobin detection by microconcentrator ultrafiltration in the diagnosis of rhabdomyolysis. Nephrol Dial Transplant 2004;19:2634-38. https://www.ncbi.nlm.nih.gov/pubmed/15280520
What is the utility of urine dipstick for blood in diagnosing rhabdomyolysis?