How does Covid-19 affect pregnancy?

We still have a long ways to go before fully understanding the potential effects of Covid-19 on pregnant women and their infants but based on data to date the disease severity seems similar to that of non-pregnant people and vertical transmission seems rare.

 
In one of the larger studies involving 158 obstetric patients with Covid-19 from New York City, ~80% had mild or asymptomatic disease with the rest manifesting moderate or severe disease (1). Cough and fever were common symptoms in both groups. Women with moderate/severe disease were more likely to have comorbidities (eg, asthma) and were also more likely to have dyspnea and chest pain/pressure. Other symptoms included muscle aches, sore throat, congestion, headache, diarrhea, nausea and loss of taste or smell. Two women had pre-term delivery because of clinical status deterioration; there were no reported deaths. The generally favorable course of Covid-19 among pregnant women has been supported by other studies (2,3,4).

 
To date, vertical transmission of SARS-CoV-2, the agent of Covid-19 appears rare (2,3,5,6). In one review, only 1 of 75 newborns tested for SARS-CoV-2 infection were positive; this infant did well clinically but had transient lymphocytopenia and abnormal liver function tests (2). A systematic review found no evidence of intrauterine transmission of SARS-CoV-2 (6).

 
Transmission of SARS-CoV-2 during the first trimester may be unlikely because of expression of ACE2 (a receptor for the virus) in the trophoblasts is very low between 6-14 weeks (7). In a small study examining placenta and fetal membranes in Covid-19 women, 3/11 samples were positive for SARS-CoV-2 but none of the infants tested positive on day 1-5 of life or demonstrated symptoms of Covid-19 (8).

 
Although another source of perinatal infection is exposure to mother’s secretions during vaginal delivery, so far presence of SARS-CoV-2 in vaginal secretions has not been reported (8). Also encouraging is a study of 18 infants born of women testing positive for SARS-CoV-2, all of whom had normal APGAR scores, with the majority (>80%) testing negative (3).

 
So overall, the major threat of Covid-19 to the fetus appears to be the severity of illness in the mother. Pregnant women should be familiar with the early symptoms of Covid-19 and seek medical care as soon as possible.

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References
1. Andrikopoulou M, Madden N, Wen T, et al. Symptoms and critical illness among obstetric patients with coronavirus disease 2019 (COVID-19) infection. OB GYN 2020 https://pubmed.ncbi.nlm.nih.gov/32459701/
2. Zaigham M, Andersson O. Maternal and perinatal outcomes with COVID-19: a systematic review of 108 pregnancies. Acta Obstet Gynecol Scand 2020;00:1-7. https://pubmed.ncbi.nlm.nih.gov/32259279/
3. Breslin N, Baptiste C, Gyamfi-Bannerman C, et al. Coronavirus disease 2019 infection among asymptomatic and symptomatic pregnant women: two weeks of confirmed presentations to an affiliated pair of New York City hospitals. Am J Obstet Gynecol MFM 2020;100118. https://www.sciencedirect.com/science/article/pii/S2589933320300483
4. Chen L, Li Q, Zheng D, et al. Clinical characteristics of pregnant women with Covid-19 in Wuhan, China. N Engl J Med 2020, April 17. https://www.nejm.org/doi/full/10.1056/NEJMc2009226?af=R&rss=currentIssue
5. Di Mascio D, Khalil A, Saccone G, et al. Outcome of coronavirus spectrum infections (SARS, MERS, COVID-19) during pregnancy: a systematic review and meta-analysis. Am J OB GYN 2020. https://www.sciencedirect.com/science/article/pii/S0002937820305585
6. Yang Z, Liu Y. Vertical transmission of severe acute respiratory syndrome coronavirus 2: A systematic review. Am J Perinatol 2020;10.1055/s-0040-1712161. https://pubmed.ncbi.nlm.nih.gov/32403141/
7. Amouroux A, Attie-Bitach, Martinovic J, et al. Evidence for and against vertical transmission for SARS-CoV-2 (COVID-19). Am J OB GYN 2020. https://www.sciencedirect.com/science/article/pii/S000293782030524X
8. Penfield CA, Brubaker SG, Lighter J. Detection of severe acute respiratory syndrome coronavirus 2 in placental and fetal membrane samples. Am J OB GYN MFM 2020. https://pubmed.ncbi.nlm.nih.gov/32391518/

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

How does Covid-19 affect pregnancy?

Why might hydroxychloroquine and azithromycin be effective against the novel Coronavirus SARS-CoV-2/Covid-19?

Repurposing of older drugs such as chloroquine or hydroxychloroquine (HC) and more recently, azithromycin (AZ), has received much attention recently in the treatment of Covid-19. Both HC and AZ have immune modulating and antiviral activity that may potentially be effective in our fight against Covid-19.

 
Chloroquine/HC: Chloroquine is an old drug used for its antimalarial activity as well as for its immune modulation and anti-inflammatory properties. It is active in mice against a variety of viruses, including some enteroviruses, Zika virus, and influenza A H5N1 (1). Both chloroquine and HC are active in vitro against Covid-19, though HC appears to be more active (2).

 
Azithromycin: A macrolide often used for treatment of bacterial respiratory tract infections but also with anti-inflammatory and antiviral activity. Azithromycin has been shown to augment interferon response in rhinovirus-infected bronchial epithelial cells as well as in an experimental mouse model of asthma exacerbation (3,4). It also has activity against Zika virus (5). As recently as 2016, some authors opined that macrolides may be useful in pandemic influenza characterized by excessive inflammatory cytokine production because of their anti-inflammatory and interferon-boosting potential (6).

 
March 2020 French clinical trial: A small non-randomized clinical trial involving 36 confirmed Covid-19 patients (mean age 45 y) reported that HC (200 mg 3x/day x 10 days) was associated with rapid viral clearance from nasopharynx, often within 3-6 days (7). The effect was even more pronounced when AZ (500 mg 1st day, followed by 250 mg daily x 4 days) was added in 6 patients.

It’s worth emphasizing that most subjects in this study were either asymptomatic (17%) or had mild disease with upper respiratory tract infection symptoms only (61%). Pneumonia was diagnosed in only 6 patients.  A significant number of patients in the treatment arm also dropped out of the study, some due to ICU transfer.

 
Although such preliminary reports appear promising, the proof of the efficacy and safety of HC and/or AZ in the treatment of Covid-19 awaits larger properly designed clinical studies. Stay tuned!

 

 

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 

References
1. Touret F, de Lamballerie X. Of chloroquine and COVID-19. Antiviral Research 2020;177. 104762. https://www.ncbi.nlm.nih.gov/pubmed/32147496
2. Yao X, Ye F, Zhang M, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respirartory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 2020, March 9. https://www.ncbi.nlm.nih.gov/pubmed/32150618
3. Menzel M, Akbarshai H, Bjermer L, et al. Azithromycin induces anti-viral effects in cultured bronchial epithelial cells from COPD patients. Scientific Reports 2016;6:28698. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4923851/
4. Menzel M, Akbarshai H, Uller L. Azithromycin exhibits interferon-inducing properties in an experimental mouse model of asthma exacerbation. Eur Resp J 2015;46:PA5095. https://erj.ersjournas.com/content/46/suppl_59/PA5095
5. Retallack H, Di Lullo E, Knopp AC, et al. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proc Nat Acad Sci USA 2016;113:14408-13. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5167169/
6. Porter JD, Watson J, Roberts LR, et al. Identification of novel macrolides with antibacterial, anti-inflammatory and type I and III-IFN-augmenting activity in airway epithelium. J Antimicrob Chemother 2016;71:2767-81. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031920/
7. Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19:results of an open-label non-randomized clinical trial. International Journal of Antimicrobial Agents—In Press 17 March 2020-DOI: 10.1016/j.ijantimicag.2020.105949 . https://www.sciencedirect.com/science/article/pii/S0924857920300996

 

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

Why might hydroxychloroquine and azithromycin be effective against the novel Coronavirus SARS-CoV-2/Covid-19?

How can I distinguish cardiac asthma from typical bronchial asthma?

Certain clinical features of cardiac asthma, defined as congestive heart failure (CHF) associated with wheezing, may be useful in distinguishing it from bronchial asthma, particularly in older patients with COPD (1-3).

• Paroxysmal nocturnal dyspnea associated with wheezing
• Presence of rales or crackles, ascites or other signs of CHF
• Poor response to bronchodilators and corticosteroids
• Formal pulmonary function test with bronchoprovocation demonstrating minimal methacholine response.

Cardiac asthma is not uncommon. In a prospective study of patients 65 yrs of age or older (mean age 82 yrs) presenting with dyspnea due to CHF, cardiac asthma was diagnosed in 35% of subjects. Even in non-elderly patients, cardiac asthma has been reported in 10-15% of patients with CHF (2).

The mechanism(s) underlying cardiac asthma is likely multifactorial. Pulmonary edema and pulmonary vascular congestion have traditionally been considered as key factors either through edema in the interstitial fluid of bronchi squeezing the bronchiolar lumen or by externally compressing the entire airway structure and the bronchiole wall. Reflex bronchoconstriction involving the vagus nerve, bronchial hyperreactivity, systemic inflammation, and airway remodeling may also play a role (1,3). 

Treatment of choice for cardiac asthma typically includes diuretics, nitrates and morphine, not bronchodilators or corticosteroids (1,3). 

Bonus Pearl: Did you know that the term “cardiac asthma” was first coined by the Scottish physician, James Hope, way back in 1832 to distinguish it from bronchial asthma!

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References
1. Litzinger MHJ, Aluen JKN, Cereceres R, et al. Cardiac asthma: not your typical asthma. US Pharm. 2013;38:HS-12-HS-18. https://www.uspharmacist.com/article/cardiac-asthma-not-your-typical-asthma
2. Jorge S, Becquemin MH, Delerme S, et al. Cardiac asthma in elderly patients: incidence, clinical presentation and outcome. BMC Cardiovascular Disorders 2007;7:16. https://www.ncbi.nlm.nih.gov/pubmed/17498318
3. Tanabe T, Rozycki HJ, Kanoh S, et al. Cardiac asthma: new insights into an old disease. Expert Rev Respir Med 2012;6(6), 00-00. https://www.ncbi.nlm.nih.gov/pubmed/23234454

How can I distinguish cardiac asthma from typical bronchial asthma?