Is there a connection between trehalose, a natural sugar found in many foods, and Clostridioides difficile disease (CDD)?

There is experimental and epidemiological evidence that trehalose in the diet may enhance the virulence of the epidemic strains (eg. Ribotype 027) of C. difficile (1). 
Many of us may not be familiar with trehalose. It’s a disaccharide composed of 2 glucose molecules and found widely in nature, including bacteria, fungi (eg mushrooms, Brewer’s yeast), plants, insects, other invertebrates, but not vertebrates (2).

Since its approval by the FDA as a natural food additive in 2000, trehalose is increasingly used for its unique properties (including flavor enhancer and moisture stabilizer) in a variety of foods, including ice cream, pasta, ground beef, and sushi. Although in humans trehalose is enzymatically broken down to glucose by the brush borders of intestinal mucosa, intact trehalose is also found in the lower GI tract where C. difficile thrives.

 
In a series of intriguing experiments involving the interaction between trehulose and C. difficile published in Nature in 2018, Collins et al found that RT027 strain of C. difficile had acquired unique mechanisms to metabolize low concentrations of trehalose and that dietary trehalose increased its virulence associated with high mortality in a mouse model of infection even in the absence of antibiotic exposure. They further demonstrated that when human diet was simulated (eg, at concentrations suggested in ice cream), trehalose levels in the cecum of the mice were sufficient to induce production of the enzyme phosphotrehalase by the same strain in vitro by over 400X in the absence of antibiotics and by over 1000X in the presence of antibiotics. Similar results were found in the ileostomy fluid samples of 2 of 3 volunteers consuming normal diet (1). 

 
Equally fascinating is the epidemiological evidence that the timelines of trehalose adoption as a food additive in 2000, subsequent uptick in the number CDDs in the US, as well as the spread of RT027 strain in many countries seem to overlap (1).

 
These observations may at least partially explain the frequently severe nature of CDD during the past 2 decades as well why a significant proportion (up to a-third) of patient with CDD appear to have no recent exposure to antibiotics or hospitalization (3-5).  An epidemiological study examining the dietary habits of patients with CDD without apparent risk factors is in order. Stay tuned!

 
Bonus Pearl: Did you know that trehalose is classified as “generally regarded as safe” (GRAS)  natural food additive by the FDA and may be listed as “added sugar” or “natural flavor” on the food packaging?

 

References
1. Collins J, Robinson C, Danhof H, et al. Dietary trehalose enhances virulence of epidemic Clostridium difficile. Nature 2018;553;291-96. https://www.nature.com/articles/nature25178
2. Avonce N, Mendoza-Vargas A, Morett E, et al. Insights on the evolution of trehalose biosynthesis. BMC Evol Biol 2006;6:109. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1769515/
3. Wilcox MH, Mooney L, Bendall R, Settle CD et al. A case-control study of community-associated Clostridium difficile infection. J Antimicrob Chemother 2008;62:388-96. https://www.researchgate.net/publication/5419268_A_case-control_study_of_community-associated_Clostridium_difficile_infection
4. Severe Clostridium difficile-associated disease in populations previously at low risk. MMWR2005;54:1201-5. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5447a1.htm
5. Halvorson SAC, Cedfeldt AS, Hunter AJ. Fulminant, non-antibiotic associated Clostridium difficile colitis following Salmonella gastroenteritis. J Gen Intern Med 2010;26:95-7.

 

If you liked this post, sign up under MENU and catch future pearls straight into your mailbox! 

Is there a connection between trehalose, a natural sugar found in many foods, and Clostridioides difficile disease (CDD)?

Is meropenem a good choice of antibiotic for treatment of my patient’s intraabdominal infection involving enterococci?

Although meropenem is a broad spectrum antibiotic that covers many gram-negative and gram-positive organisms as well as anaerobes, its activity against enterococci is generally poor and leaves much to be desired.

In a study of ampicillin-sensitive E. faecalis isolates from hospitalized patients, only 36% of isolates were considered susceptible (MIC≤4 mg/L); activity against E. faecium isolates was similarly poor.1 Several other studies have reported the suboptimal activity of meropenem against both E. faecalis and E. faecium, 2-4 with susceptibility rates as low as 8.6% depending on the MIC break point used.3

A popular textbook and a handbook on infectious diseases also do not recommend the use of meropenem for treatment of enterococcal infections. 5,6

Of interest, the package insert states that meropenem is indicated for complicated skin and soft tissue infections due to a variety of organisms, including E. faecalis (vancomycin-susceptible isolates only), but not for complicated intra-abdominal infections or meningitis due this organism.7

In our patient with intraabdominal infection,  we may consider piperacillin-tazobactam instead.  Piperacillin-tazobactam is a broad spectrum antibiotic with excellent coverage against anaerobes and ampicillin-susceptible E. faecalis.1,8  

 

References

  1. Endtz HP, van Dijk WC, Verbrugh HA, et al. Comparative in-vitro activity of meropenem against selected pathogens from hospitalized patients in the Netherlands. J Antimicrob Chemother 1997;39:149-56. https://www.ncbi.nlm.nih.gov/pubmed/9069534
  2. Pfaller MA, Jones RN. A review of the in vitro activity of meropenem and comparative antimicrobial agents tested against 30,254 aerobic and anaerobic pathogens isolated world wide. Diag Microbiol Infect Dis 1997;28:157-63. https://www.ncbi.nlm.nih.gov/pubmed/9327242
  3. Hallgren A, Abednazari H, Ekdahl C, et al. Antimicrobial susceptibility patterns of enterococci in intensive care units in Sweden evaluated by different MIC breakpoint systems. J Antimicrob Chemother 2001;48:53-62. https://www.ncbi.nlm.nih.gov/pubmed/11418512
  4. Hoban DJ, Jones RN, Yamane N, et al. In vitro activity of three carbapenem antibiotics comparative studies with biapenem (L-627), imipenem, and meropenem against aerobic pathogens isolated worldwide. Diag Microbiol Infect Dis 993;17:299-305.https://www.ncbi.nlm.nih.gov/pubmed/8112045
  5. Chambers HF. Carbapenem and monobactams. In Mandell GL et al. eds. Principles and practice of infectious diseases. 2010, pp 341-45.
  6. Cunha CB, Cunha BA. Antibiotic essentials. 2017, pp 689-91.
  7. Meropenem.http://online.lexi.com/lco/action/doc/retrieve/docid/patch_f/7253?searchUrl=%2Flco%2Faction%2Fsearch%3Fq%3Dmeropenem%26t%3Dname
  8. Perry CM, Markham A. Piperacillin/tazobactam. Drugs 1999;57:805-43. https://link.springer.com/article/10.2165%2F00003495-199957050-00017

If you liked this post, sign up under MENU and catch future pearls straight into your mailbox!

Is meropenem a good choice of antibiotic for treatment of my patient’s intraabdominal infection involving enterococci?

Should my patient with COPD and recurrent exacerbations undergo evaluation for antibody deficiency?

Although there are no consensus guidelines on when to evaluate patients with COPD for antibody deficiency, we should at least consider this possibility in patients with recurrent exacerbations despite maximal inhaled therapy (long-acting beta-2 agonist-LABA, long-acting muscarinic antagonist-LAMA and inhaled corticosteroids).1

Couple of retrospective studies of common variable immunodeficiency (CVID) in patients with COPD have reported a prevalence ranging from 2.4% to 4.5%. 1 In another study involving 42 patients thought to have had 2 or more moderate to severe COPD exacerbations per year—often despite maximal inhaled therapy— 29 were diagnosed  with antibody deficiency syndrome, including 20 with specific antibody deficiency (SAD), 8 with CVID and 1 with selective IgA deficiency.2  Although systemic corticosteroids may lower IgG and IgA levels, the majority of the patients in this study were not taking any corticosteroids at the time of their evaluation.

In another study involving patients undergoing lung transplantation, pre-transplant mild hypogammaglobulinemia was more prevalent among those with COPD (15%) compared to other lung conditions (eg, cystic fibrosis), independent of corticosteroid use.3  A favorable impact of immunoglobulin therapy or chronic suppressive antibiotics on reducing recurrent episodes of COPD exacerbation in patients with antibody deficiency has also been reported, supporting the clinical relevance of hypogammaglobulinemia in these patients. 2,4 

Remember that even normal quantitative serum immunoglobulin levels (IgG, IgA, and IgM) do not necessarily rule out antibody deficiency. Measurement of IgG subclasses, as well as more specific antibodies, such as those against pneumococcal polysaccharides may be required for further evaluation.

See a related pearl at https://pearls4peers.com/2015/07/12/my-65-year-old-patient-has-had-several-bouts-of-bacterial-pneumonia-in-the-past-2-years-her-total-serum-immunoglobulins-are-within-normal-range-could-she-still-be-immunodeficient/.

Contributed in part by Sydney Montesi, MD, Mass General Hospital, Boston, MA.

References

  1. Berger M, Geng B, Cameron DW, et al. Primary immune deficiency diseases as unrecognized causes of chronic respiratory disease. Resp Med 2017;132:181-188. https://www.sciencedirect.com/science/article/pii/S0954611117303554
  2. McCullagh BN, Comelias AP, Ballas ZK, et al. Antibody deficiency in patients with frequent exacerbations of chronic obstructive pulmonary disease (COPD). PLoS ONE 2017; 12: e0172437. https://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0172437
  3. Yip NH, Lederer DJ, Kawut SM, et al. Immunoglobulin G levels before and after lung transplantation 2006;173:917-21.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2662910/
  4. Cowan J, Gaudet L, Mulpuru S, et al. A retrospective longitudinal within-subject risk interval analysis of immunoglobulin treatment for recurrent acute exacerbation of chronic obstructive pulmonary disease. PLoS ONE 2015;10:e0142205. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0142205

If you liked this post, sign up under MENU and catch future pearls straight into your mailbox!

Should my patient with COPD and recurrent exacerbations undergo evaluation for antibody deficiency?

Should I choose a bactericidal over bacteriostatic antibiotic in the treatment of my patient with pneumonia complicated by bacteremia?

You don’t have too!  Although “bacteriostatic” antibiotics have traditionally been regarded as inferior to “bactericidal” antibiotics in the treatment of serious infections, a 2018 “myth busting” systemic literature review1 concluded that bacteriostatic antibiotics are just as effective against a variety of infections, including pneumonia, non-endocarditis bacteremia, skin and soft tissue infections and genital infections; no conclusion can be made in regards to endocarditis or bacterial meningitis, however, due insufficient clinical evidence.1-3

Interestingly, most of the studies included in the same systemic review showed that bacteriostatic antibiotics were more effective compared to bactericidal antibiotics.1 So, for most infections in hospitalized patients, including those with non-endocarditis bacteremia, the choice of antibiotic among those that demonstrate in vitro susceptibility should not be based on their “cidal” vs “static” label.

Such conclusion should not be too surprising since the definition of bacteriostatic vs bactericidal is based on arbitrary in vitro constructs and not validated by any available in vivo data. In addition, static antibiotics may kill bacteria as rapidly as cidal antibiotics in vitro at higher antibiotic concentrations.3

Another supportive evidence is a 2019 study finding similar efficacy of sequential intravenous-to-oral outpatient antibiotic therapy for MRSA bacteremia compared to continued IV antibiotic therapy despite frequent use of bacteriostatic oral antibiotics (eg, linezolid, clindamycin and doxycycline). 4

 

References

  1. Wald-Dickler N, Holtom P, Spellberg B. Busting the myth of “static vs cidal”: as systemic literature review. Clin Infect Dis 2018;66:1470-4. https://academic.oup.com/cid/article/66/9/1470/4774989
  2. Steigbigel RT, Steigbigel NH. Static vs cidal antibiotics. Clin Infect Dis 2019;68:351-2. https://academic.oup.com/cid/article-abstract/68/2/351/5067395
  3. Wald-Dickler N, Holtom P, Spellberg B. Static vs cidal antibiotics; reply to Steigbigel and Steigbigel. Clin Infect Dis 2019;68:352-3. https://academic.oup.com/cid/article-abstract/68/2/352/5067396?redirectedFrom=fulltext
  4. Jorgensen SCJ, Lagnf AH, Bhatia S, et al. Sequential intravenous-to-oral outpatient antbiotic therapy for MRSA bacteraemia: one step closer.  J Antimicrob Chemother 2019;74:489-98.  https://www.ncbi.nlm.nih.gov/pubmed/30418557

 

If you liked this post, sign up under MENU and get future pearls straight into your mailbox!

Should I choose a bactericidal over bacteriostatic antibiotic in the treatment of my patient with pneumonia complicated by bacteremia?

When should I consider prophylaxis for Pneumocystis pneumonia (PCP) in my patient on prednisone?

It is generally recommended that patients on ≥20 mg of daily prednisone (or its equivalent) for ≥1 month be considered for PCP prophylaxis. 1

Couple of studies in 1990s helped define the dose and duration of corticosteroids (CS) that should prompt PCP prophylaxis. A Mayo Clinic study of patients without AIDS found that a median daily CS dose of 30 mg of prednisone or equivalent—with 25% of patients receiving as little as 16 mg of prednisone daily— was associated with PCP.The median duration of CS therapy before PCP was 12 weeks. A similar study found a mean CS dose of 33 mg of prednisone or equivalent with mean duration of 7 months (range 1-154 months) among patients with PCP without AIDS. 3

A 2018 retrospective study4  of patients with rheumatic diseases receiving prolonged high-dose CS therapy (≥30 mg prednisone for ≥4 weeks) found that PCP prophylaxis with trimethoprim/sulfamethoxazole (TMP/STX) resulted in 93% reduction in the incidence of PCP with an overall number needed to treat (NNT) of 52. It was suggested that PCP prophylaxis could be discontinued in patients receiving < 15 mg of prednisone daily.

Bonus Pearl: Did you know that TMP/STX may be given either as double-strength 3x/week or single-strength daily? 5,6

If you liked this post, sign up under MENU and get future pearls straight into your mailbox!

References

1. Limper AH, Knox KS, Sarosi SA, et al. An official American Thoracic Society statement: Treatment of fungal infections in adult pulmonary and critical care patients. Am J Respir Crit Care Med 2011;183:96-128. https://www.ncbi.nlm.nih.gov/pubmed/21193785

2. Yale SH, Limper AH. Pneumocystis carinii pneumonia in patients without acquired immunodeficiency syndrome: associated illness and prior corticosteroid therapy. Mayo Clin Proc 1996;71:5-13. https://www.sciencedirect.com/science/article/abs/pii/S0025619611649148

3. Arend SM, Kroon FP, van’t Wout JW. Pneumocystis carinii pneumonia in patients without AIDS, 1980 through 1993: An analysis of 78 cases. Arch Intern Med 1995;155:2436-2441. https://www.ncbi.nlm.nih.gov/pubmed/7503602

4. Park JW, Curtis JR, Moon J, et al. Prophylactic effect of trimethoprim-sulfamethoxazole for Pneumocystis pneumonia in patients with rheumatic diseases exposed to prolonged high-dose glucocorticoieds. Ann Rheum Dis 2018;77:664-9. https://www.ncbi.nlm.nih.gov/pubmed/29092853

5. Anevlavis S, Kaltsas K, Bouros D. Prophylaxis for pneumocystis pneumonia (PCP) in non-HIV infected patients. PNEUMON 2012;25, October-December.http://www.pneumon.org/assets/files/789/file483_273.pdf

6. Stern A, Green H, Paul M, Leibovici L. Prophylaxis for pneumocystis pneumonia (PCP) in non-HIV immunocompromised patients (Review). Cochrane data of Systematic Reviews 2014, issue 10. DOI: 10.1002/14651858.CD005590.pub3. https://www.ncbi.nlm.nih.gov/pubmed/25269391

 

When should I consider prophylaxis for Pneumocystis pneumonia (PCP) in my patient on prednisone?

My hospitalized patient with pneumonia has now suffered an acute myocardial infarction (MI). Can acute infection and MI be related?

Yes! Ample epidemiological studies implicate infection as an important risk factor for MI.1 The increased risk of MI has been observed during the days, weeks, months or even years following an infection.

A 2018 paper reported a several-fold risk of MI during the week after laboratory-confirmed infection caused by a variety of respiratory pathogens such as influenza virus (6-fold), respiratory syncytial virus (4-fold), and other respiratory viruses (3-fold). 2 Among patients hospitalized for pneumococcal pneumonia, 7-8% may suffer an MI.3,4 One study found a 48-fold increase in the risk of MI during the first 15 days after hospitalization for acute bacterial pneumonia.5 Similarly, an increase in the short-term risk of MI has been observed in patients with urinary tract infection and bacteremia.6

The risk of MI appears to be the highest at the onset of infection and correlates with the severity of illness, with the risk being the highest in patients with pneumonia complicated by sepsis, followed by pneumonia and upper respiratory tract infection. Among patients with pneumonia, the risk exceeds the baseline risk for up to 10 years after the event, particularly with more severe infections.1

Potential mechanisms of MI following infections include release of inflammatory cytokines (eg, interleukins 1, 6, tumor necrosis factor alpha) causing activation of inflammatory cells in atherosclerotic plaques, in turn resulting in destabilization of the plaques. In addition, the thrombogenic state of acute infections, platelet and endothelial dysfunction may increase the risk of coronary thrombosis at sites of plaque disruption beyond clinical resolution of the acute infection. 1

Liked this post? Download the app on your smartphone and sign up under MENU to get future pearls straight into your inbox, all for free!

 

References

  1. Musher DM, Abers MS, Corrales-Medina VF. Acute infection and myocardial infarction. N Engl J Med 2019;380:171-6. https://www.ncbi.nlm.nih.gov/pubmed/30625066
  2. Kwong JC, Schwartz KL, Campitelli MA, et al. Acute myocardial infarction after laboratory-confirmed influenza infection. N Engl J Med 2018;378:345-53. https://www.nejm.org/doi/full/10.1056/NEJMoa1702090
  3. Musher DM, Alexandraki I, Graviss EA, et al. Bacteremic and nonbacteremic pneumococcal pneumonia: a prospective study. Medicine (Baltimore) 2000;79:210-21. https://www.ncbi.nlm.nih.gov/pubmed/10941350
  4. Musher DM, Rueda Am, Kaka As, Mapara SM. The association between pneumococcal pneumonia and acute cardiac events. Clin Infect Dis 2007;45:158-65. https://www.ncbi.nlm.nih.gov/pubmed/17578773
  5. Corrales-Medina VF, Serpa J, Rueda AM, et al. Acute bacterial pneumonia is associated with the occurrence of acute coronary syndromes. Medicine (Baltimore) 2009;88:154-9. https://www.ncbi.nlm.nih.gov/pubmed/19440118
  6. Dalager-Pedersen M, Sogaard M, Schonheyder HC, et al. Risk for myocardial infarction and stroke after community-acquired bacteremia: a 20-year population-based cohort study. Circulation 2014;129:1387-96. https://www.ncbi.nlm.nih.gov/pubmed/24523433

 

My hospitalized patient with pneumonia has now suffered an acute myocardial infarction (MI). Can acute infection and MI be related?

My patient with community-acquired pneumonia (CAP) will be going home on an oral antibiotic. Is there a significant difference in the risk of Clostridium difficile infection among the usual CAP antibiotics?

Not all antibiotics are equal in their risk of CDI. Among the common antibiotics used for respiratory tract infections, doxycycline appears to be the least likely to be associated with CDI. 

A population-based case-control study of community-acquired CDI found that while recent exposure increased the risk of CDI for fluoroquinolones, macrolides, cephalosporins, sulfonamides and trimethoprim and penicillins, the risk of CDI with tetracycline use was not increased (1).  Similar findings (with the exception of sulfonamides also appearing risk-neutral) have been reported by others (2). 

Among patients receiving ceftriaxone, receipt of doxycycline has been associated with protection against development of CDI (3).  A 2018 systematic review and meta-analysis also concluded that tetracyclines were associated with a decreased risk of CDI; OR 0.55 (95% CI 0,40-0.75) for doxycycline alone (4). 

 

The most likely explanation for why doxycycline may be associated with lower risk of CDI is its in vitro activity against anaerobes, including C. difficile. Additionally, because of its ability to inhibit protein synthesis, doxycycline may attenuate C. difficile toxin production. Its high bioavailability and maximal absorption from the upper gastrointestinal tract may also mitigate its impact on gut flora, further reducing its risk of CDI (3). 

 

References
1. Delaney JAC, Dial S, Barkun A et al. Antimicrobial drugs and community-acquired Clostridium difficile-associated disease-UK. Emerg Infect Dis 2007:13;761-63. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2738472
2. Kuntz JL, Chirchilles EA, et al. Incidence of and risk factors for community-associated Clostridium difficile infection : A nested case-control study. BMC Infect Dis 2011;11:194. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154181/ 
3. Doernberg SB, Winston LG, Deck DH, et al. Does doxycycline protect against development of Clostridium difficile infection. Clin Infec Dis 2012;44:615-20. https://www.academia.edu/7814406/Does_Doxycycline_Protect_Against_Development_of_Clostridium_difficile_Infection
4. Tariq R, Cho J, Kapoor S, et al. Low risk of primary Clostridium difficile infection with tetracyclines: a systematic review and metanalysis. Clin Infect Dis 2018; 766:514-27. https://academic.oup.com/cid/article/66/4/514/4161552 

If you liked this post, sign up under MENU and get future pearls straight into your mailbox!

My patient with community-acquired pneumonia (CAP) will be going home on an oral antibiotic. Is there a significant difference in the risk of Clostridium difficile infection among the usual CAP antibiotics?

My patient with erythema multiforme has tested positive for Mycoplasma pneumoniae IgM antibody. Does this mean she has an acute M. pneumonia infection as the cause of her acute illness?

Not necessarily! Although detection of IgM in the serum of patients has proven valuable in diagnosing many infections during their early phase, particularly before IgG is detected, less well known is that false-positive IgM results are not uncommon. 1

More specific to M. pneumoniae IgM, false-positive results have been reported in 10-80% of patients without a clinical diagnosis of acute M. pneumoniae infection 2-4 and 3-15% of blood donors. 4

False-positive IgM results may also occur when testing for other infectious agents, such as the agent of Lyme disease (Borrelia burgdorferi), arboviruses (eg, Zika virus), and herpes simplex, Epstein-Barr, cytomegalovirus, hepatitis A and measles viruses. 1,5  

Reports of false positive IgM results include a patient with congestive heart failure and mildly elevated liver enzymes who had a false-positive hepatitis IgM which led to unnecessary public health investigation and exclusion from an adult day care center. 1 Another patient with sulfa rash had a false-positive measles IgM antibody resulting in callback of >100 patients and healthcare providers for testing!5

There are many potential mechanisms for false-positive IgM results, including polyclonal B cell activation, “vigorous immune response”, cross-reactive antibodies, autoimmune disease, subclinical reactivation of latent viruses, influenza vaccination, overreading weakly reactive results, and persistence of antibodies long after the resolution of the acute disease. 1,2

In our patient, a significant rise in M. pneumoniae IgG between acute and convalescent samples several weeks apart may be more helpful in diagnosing an acute infection accounting for her erythema multiforme.

 

References

  1. Landry ML. Immunoglobulin M for acute infection: true or false? Clin Vac Immunol 2016;23:540-5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933779/
  2. Csango PA, Pedersen JE, Hess RD. Comparison of four Mycoplasma pneumoniae IgM-, IgG- and IgA-specific enzyme immunoassays in blood donors and patients. Clin Micro Infect 2004;10:1089-1104. https://www.clinicalmicrobiologyandinfection.com/article/S1198-743X(14)63853-2/pdf
  3. Thacker WL, Talkington DF. Analysis of complement fixation and commercial enzyme immunoassays for detection of antibodies to Mycoplasma pneumoniae in human serum. Clin Diag Lab Immunol 2000;7:778-80. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC95955/
  4. Ryuta U, Juri O, Inoue Y, et al. Rapid detection of Mycoplasma pneumoniae IgM antibodies using immunoCard Mycoplasma kit compared with complement fixation (CF) tests and clinical application. European Respiratory Journal 2012; 40: P 2466 (Abstract). https://erj.ersjournals.com/content/40/Suppl_56/P2466 
  5. Woods CR. False-positive results for immunoglobulin M serologic results: explanations and examples. J Ped Infect Dis Soc 2013;2:87-90. https://www.ncbi.nlm.nih.gov/pubmed/26619450

If you liked this post, sign up under MENU and get future pearls straight into your mailbox!

My patient with erythema multiforme has tested positive for Mycoplasma pneumoniae IgM antibody. Does this mean she has an acute M. pneumonia infection as the cause of her acute illness?

My patient with history of intravenous drug use has noticed excessive growth of thick hair at the site of a previous abscess on her arm. Is there a connection between skin and soft tissue infections and localized hypertrichosis?

Localized hypertrichosis after infectious rash or “HAIR”, has been reported following a variety of skin and soft tissue infections (SSTIs), including sites of previous septic thrombophlebitis, cellulitis and olecranon bursitis. 1,2  A similar phenomenon has also been described in infants with recent chicken pox, as well non-infectious skin conditions arising from repeated irritation, friction, burns, excoriated insect bites, and fractures with cast application.1,2

Although heat and hyperemia have been implicated as growth stimulants for the hair follicle, 3 the exact mechanism of this intriguing phenomenon is unclear. It is possible that the sustained inflammatory process associated with chronic or more severe SSTIs leads to protracted stimulation of certain growth receptors in the human hair follicles (eg, transient vanilloid receptor-1) through heat and inflammation, as observed in mice in vivo.4

Aside from its possibly undesirable esthetic effects, localized HAIR appears to have no adverse health consequences, is reversible, and should require no further evaluation.

Note: 2 of the publications cited were written by the author of this post.

References

  1. Manian, FA. Localized hypertrichosis after infectious rash in adults. JAAD Case Reports 2015; 1:106-7. https://www.jaadcasereports.org/article/S2352-5126(15)00051-X/pdf
  2. Manian, FA. Localized hypertrichosis after infectious rash (“HAIR”) in adults: a report of 5 cases. Open Forum Infect Dis 2014;1 (Suppl 1):S195-S195. http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC5782143&blobtype=pdf
  3. Leung AK, Kiefer GN. Localized acquired hypertrichosis associated with fracture and cast application. J Natl Med Assoc 1989;81:65-7. https://www.ncbi.nlm.nih.gov/pubmed/2724357
  4. Bodo E, Biro T, Telek A, et al. A hot new twist to hair biology; involvement of vanilloid receptor-1 (VR1/TRPV1) signaling in human hair growth control. Am J Pathol 1005;166:985-8. https://www.sciencedirect.com/science/article/pii/S0002944010623206

 

If you liked this post, sign up under MENU and catch future pearls straight into your mailbox!

My patient with history of intravenous drug use has noticed excessive growth of thick hair at the site of a previous abscess on her arm. Is there a connection between skin and soft tissue infections and localized hypertrichosis?

When should I consider Pseudomonas aeruginosa as a cause of respiratory tract infection in my hospitalized patient with COPD exacerbation?

The most consistent risk factor for isolation of P. aeruginosa from sputum of adults with COPD is the presence of more advanced pulmonary disease (eg, FEV-1 <35%-50% of predicted value) or functional impairment (1-5).

 

Chronic corticosteroid use is also frequently cited as an important predictor of respiratory tract colonization/infection due to P. aeruginosa in patients with COPD, while the data on antibiotic use during the previous months have been conflicting (2,4). Other risk factors may include prior isolation of P. aeruginosa and hospital admission during the previous year (1).

 
A prospective study of patients hospitalized for COPD exacerbation found P. aeruginosa to be the most frequently isolated organism, growing from 26% of validated sputum samples at initial admission, followed by Streptococcus pneumoniae and Hemophilus influenzae. In the same study, bronchiectasis (present in up to 50% of patients with COPD) was not shown to be independently associated with the isolation of P. aeruginosa (1).

 
Of interest, compared to the patients without P. aeruginosa, patients hospitalized for acute exacerbation of COPD and isolation of P. aeruginosa from sputum have significantly higher mortality: 33% at 1 year, 48% at 2 years and 59% at 3 years (5).

 

Liked this post? Download the app on your smart phone and sign up under Menu to catch future pearls straight into your inbox!
References
1. Garcia-Vidal C, Almagro P, Romani V, et al. Pseudomonas aeruginosa in patients hospitalized for COPD exacerbation: a prospective study. Eur Respir J 2009;34:1072-78. https://www.ncbi.nlm.nih.gov/pubmed/19386694
2. Murphy TF. Pseudomonas aeruginosa in adults with chronic obstructive pulmonary disease. Curr Opin Pulm Med 2009;15:138-42. https://www.ncbi.nlm.nih.gov/pubmed/19532029
3. Miravitlles M, Espinosa C, Fernandez-Laso E, et al. Relationship between bacterial flora in sputum and functional impairment in patients with acute exacerbations of COPD. Chest 1999;116:40-6. https://www.ncbi.nlm.nih.gov/pubmed/10424501
4. Murphy TF, Brauer AL, Eschberger K, et al. Pseudomonas aeruginosa in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2008;177:853-60. https://www.ncbi.nlm.nih.gov/pubmed/18202344
5. Almagro P, Silvado M, Garcia-Vidal C, et al. Pseudomonas aeruginosa and mortality after hospital admission for chronic obstructive pulmonary disease. Respiration 2012;84:36-43. https://www.karger.com/Article/FullText/331224

 

 

When should I consider Pseudomonas aeruginosa as a cause of respiratory tract infection in my hospitalized patient with COPD exacerbation?