How does iron overload increase the risk of infection?

Iron overload, either primary (eg, hereditary hemochromatosis) or secondary (eg, hemolysis/frequent transfusion states), may increase the risk of infections through at least 2 mechanisms: 1. Enhancement of the virulence of the pathogen; and 2. Interference with the body’s normal defense system.1-7

Excess iron has been reported to enhance the growth of numerous organisms, ranging from bacteria (eg, Yersinia, Shigella, Vibrio, Listeria, Legionella, Ehrlichia, many other Gram-negative bacteria, staphylococci, streptococci), mycobacteria, fungi (eg, Aspergillus, Rhizopus/Mucor, Cryptococcus, Pneumocystis), protozoa (eg, Entamaeba, Plasmodium, Toxoplasma) and viruses (HIV, hepatitis B/C, cytomegalovirus, parvovirus). 1-7

In addition to enhancing the growth of many pathogens, excess iron may also inhibit macrophage and lymphocyte function and neutrophil chemotaxis .1,2 Iron loading of macrophages results in the inhibition of interferon-gamma mediated pathways and loss of their ability to kill intracellular pathogens such as Legionella, Listeria and Ehrlichia. 2

Not surprisingly, there are numerous reports in the literature of infections in hemochromatosis, including Listeria monocytogenes meningitis, E. Coli septic shock, Yersinia enterocolitica sepsis/liver abscess, Vibrio vulnificus shock (attributed to ingestion of raw oysters) and mucormycosis causing periorbital cellulitis. 2

Bonus pearl: Did you know that the ascitic fluid of patients with cirrhosis has low transferrin levels compared to those with malignancy, potentially enhancing bacterial growth and increasing their susceptibility to spontaneous bacterial peritonitis? 8

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.


  1. Weinberg ED, Weinberg GA. The role of iron in infection. Curr Opin Infect Dis 1995;8:164-69.
  2. Khan FA, Fisher MA, Khakoo RA. Association of hemochromatosis with infectious diseases: expanding spectrum. Intern J Infect Dis 2007;11:482-87.
  3. Thwaites PA, Woods ML. Sepsis and siderosis, Yersinia enterocolitica and hereditary haemochromatosis. BMJ Case Rep 2017. Doi:10.11336/bvr-206-218185.
  4. Weinberg ED. Iron loading and disease surveillance. Emerg Infect Dis 1999;5:346-52.
  5. Matthaiou EI, Sass G, Stevens DA, et al. Iron: an essential nutrient for Aspergillus fumigatus and a fulcrum for pathogenesis. Curr Opin Infect Dis 2018;31:506-11.
  6. Alexander J, Limaye AP, Ko CW, et al. Association of hepatic iron overload with invasive fungal infection in liver transplant recipients. Liver Transpl 12:1799-1804.
  7. Schmidt SM. The role of iron in viral infections. Front Biosci (Landmark Ed) 2020;25:893-911.
  8. Romero A, Perez-Aurellao JL, Gonzalez-Villaron L et al. Effect of transferrin concentration on bacterial growth in human ascetic fluid from cirrhotic and neoplastic patients. J Clin Invest 1993;23:699-705.

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

How does iron overload increase the risk of infection?

Can native valve infective endocarditis be associated with hemolytic anemia?

Yes, but it’s rare!  Hemolytic anemia (HA) in the setting of infective endocarditis (IE) has only been described in a few case reports (1-3).  Although diseased valves may cause shearing stress that fragments RBCs, similar to that associated with mechanical heart valves, an autoimmune hemolytic process has also been implicated. 

A 2018 case report describes a patient with hypertrophic obstructive cardiomyopathy (HOCM) with left ventricular outflow tract (LVOT) obstruction who had HA secondary to subacute IE due to Actinomyces israelii (1).   The anemia completely resolved after treating the IE (1). The cause was most likely mechanical shearing (schistocytes or fragmented RBCs present on peripheral smear) by the diseased valves; autoimmune hemolysis was considered unlikely in this case due to consistently negative Coombs tests and failure to respond to corticosteroids (1). 

An autoimmune mechanism was invoked by a 1999 report reviewing 6 cases of HA associated with IE (3).  All patients had fragmented erythrocytes, but several also demonstrated an immune-mediated mechanism for their HA, supported by the presence of spherocytes, splenomegaly, and + Coombs test (2,3).  The production of anti-erythrocyte antibodies, modification of antigenicity of erythrocyte antigens, or unmasking of antigens in IE may play a role (1,3). Additional evidence in support of an immune-mediated mechanism of HA in IE has been provided by an experimental study demonstrating significantly shorter RBC half-life in rabbits with intact spleen compared to that of splenectomized animals (4).



1. Toom S, Xu Y. Hemolytic anemia due to native valve subacute endocarditis with Actinomyces israellii infection. Clin Case Rep 2018;6: 376-79. 

2. Hsu CM, Lee PI, Chen JM, et al. Fatal Fusarium endocarditis complicated by hemolytic anemia and thrombocytopenia in an infant. Pediatr Infect Dis 1994;13:1146-48. 

3. Huang HL, Lin FC, Hung KC, et al. Hemolytic anemia in native valve infective endocarditis. Jpn Circ J 1999;63:400-403. 

4. Joyce RA, Sand MA. Mechanism of anaemia in experimental bacterial endocarditis. Scand J Haematol 1975;15:306-11. 


Contributed by Scott Goodwin, Medical Student, Harvard Medical School, Boston, MA. 


If you like this post, sign up under menu and receive future pearls from P4P right into your mailbox! Thank you!

Can native valve infective endocarditis be associated with hemolytic anemia?

What is the connection between methemoglobinemia and hemolytic anemia?

Methemoglobinemia coupled with hemolytic anemia (HA) has been reported under different clinical scenarios and may have therapeutic implications for treatment of methemoglobinemia in the setting of G6PD deficiency.

Increased methemoglobin levels have been observed during the hemolytic crisis of patients with favism due to G6PD deficiency. This finding has been attributed to excessive oxidative stress generated by divicine, an oxidizing constituent of fava beans, and the inability to reduce its stress because of an insufficient G6PD-dependent hexose monophosphate shunt. 1Hemolytic anemia may also follow drug-induced methemoglobinemia, especially with exposure to dapsone, sulfasalazine, or phenacetin, and may be a feature of hemoglobin MSaskatoon and MHyde Park , abnormal hemoglobin variants associated with genetic methemoglobinemia. 2The concurrence of hemolysis due to G6PD deficiency and methemoglobinemia is not just an academic curiosity and may in fact pose a therapeutic quandary. This is because methylene blue, the treatment of choice for methemoglobinemia, is also an oxidant and works only after it is reduced to leukomethylene blue by (you guessed it!) nicotinamide adenine nucleotide phosphate (NADPH), a G6PD-dependent process. 2,3 With plenty of methylene blue on hand and little leukomethylene around in G6PD-deficiency, treatment may be ineffective or even cause worsening of methemoglobinemia. It’s never simple!

Final fun fact: Did you know that methylene blue is the first synthetic drug (>100 years ago) and has been used in the prevention of UTIs in the elderly, and treatment of pediatric malaria and Alzheimer’s disease? 4References

  1. Schuurman M, van Waardenburg D, Da Costa J, et al. Severe hemolysis and methemoglobinemia following fava beans ingestion in glucose-6-phosphate dehydrogenase: Case report and literature review. Eur J Ped 2009;168:779-782.
  2. Rehman HU. Methemoglobinemia. West J Med 2001;175:193-96.
  3. Hassan KS, Al-Riyami AZ, Al-Huneini M, et al. Methemoglobinemia in an elderly patient with glucose-6-phosphate dehydrogenase deficiency: A case report. Oman Med J 2014;29:135-37.
  4. Schirmer RH, Adler H, Pickhardt M, et al. “Lest we forget you—Methylene blue…” Neurobiology of Aging 2011; 32:2325.
What is the connection between methemoglobinemia and hemolytic anemia?