Is intermittent pneumatic compression effective in reducing the risk of deep vein thrombosis in non-surgical hospitalized patients at high risk of major bleed?

The weight of the evidence to date suggests that intermittent pneumatic compression (IPC) is effective in reducing the risk of deep venous thrombosis (DVT) in hospitalized patients with stroke. 1,2 Whether IPC is also effective in non-surgical hospitalized patients without stroke at high risk of DVT and major bleed needs further studies.

A 2013 multicenter randomized trial (CLOTS 3) involving over 2,000 immobile hospitalized patients post-stroke found a significantly lower risk of DVT in proximal veins or any symptomatic DVT in the proximal veins within 30 days of randomization (8.5% vs 12.1%; absolute reduction risk 3.6%, 95% C.I. 1.4-5.8). Of note, the rate of concurrent heparin or low molecular weight heparin (LMWH) prophylaxis was similar between the 2 groups (17%). 1

A meta-analysis including the CLOTS 3 study and 2 other smaller trials 2 in patients with stroke found a risk reduction for proximal DVT (O.R. 0.66, 95% C.I 0.52-0.84) with nearly significant reduction in deaths by the end of the treatment period (O.R. 0.81, 95% 0.65-1.01).1

Although IPC may also be effective in non-surgical hospitalized patients without stroke but at high risk of DVT and bleed, proper trials in this patient population is lacking. In fact, the 2012 American College of Chest Physicians guidelines on antithrombotic therapy and prevention of thrombosis classifies use of IPC in preventing DVT’s in non-surgical acutely ill hospitalized patients as category 2C recommendation (weak, low quality evidence). 3

The patient population and methodology of above studies should be distinguished from those of a 2019 published trial involving only critically ill patients—all receiving pharmacologic thromboprophylaxis—which reported no reduction in the incidence of proximal lower-limb DVT with the addition of IPC. 4

 

Bonus Pearl: Did you know that venous thromboembolism has been reported in up to 42% of hospitalized patients who have had a stroke? 1

 

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 

References

  1. Dennis M, Sandercock P, Reid J, et al. Effectiveness of intermittent pneumatic compression in reduction of risk of deep vein thrombosis in patients who have had a stroke (CLOTS 3): a multicenter randomized controlled trial. Lancet 2013;382:516-24. https://www.thelancet.com/cms/10.1016/S0140-6736(13)61050-8/attachment/1a0438d2-86eb-4da1-8bdb-92c0aec18b8d/mmc1.pdf
  2. Naccarato M, Chiodo Grandi F, Dennis M, et al. Physical methods for preventing deep vein thrombosis in stroke. Cochrance Database Syst Rev 2010;8:CD001922. https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD001922.pub3/full
  3. Guyatt GH, Akl EA, Crowther M, et al. Executive summary: Antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. CHEST 2012;141 (suppl):7S-47S. http://www.sphcs.org/workfiles/CardiacVascular/7S-full.pdf
  4. Arabi YM, Al-Hameed F, Burns KEA, et al. Adjunctive intermittent pneumatic compression for venous thromboprophylaxis. N Engl J Med 2019;380:1305-15. https://pubmed.ncbi.nlm.nih.gov/30779530/

 

 

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

Is intermittent pneumatic compression effective in reducing the risk of deep vein thrombosis in non-surgical hospitalized patients at high risk of major bleed?

Should I consider a direct oral anticoagulant (DOAC) for my patient with pancreatic cancer and pulmonary embolism?

Classically, anticoagulant (AC) of choice in active malignancy with venous thromboembolism (VTE) has been low-molecular weight heparin (LMWH) (eg, enoxaparin) because of trials showing its superiority over warfarin. But now the pendulum is swinging toward DOACs as an alternative mode of treatment.

A 2018 trial found that oral edoxaban (an Xa inhibitor) was noninferior to subcutaneous dalteparin (a LMWH) with the composite outcome of recurrent VTE or major bleeding.1 Overall, recurrent VTE was significantly lower in edoxaban (7.9% vs 11.3%) but had higher major bleeding (6.9% vs 4.05). Of note, edoxaban was initiated after 5 days of treatment with LMWH.

More recently, the 2020 Caravaggio trial, showed non-inferiority of apixaban (at a dose of 10 mg twice daily for the first 7 days, followed by 5 mg twice daily) to dalteparin with recurrent VTE of 5.6% in the apixaban group vs 7.9% in the dalteparin.2 There was no significant difference in rates of major bleeding (3.8% vs 4%). A prior small study, the ADAM-VTE trial, compared apixaban to dalteparin in patients with malignancy and VTE.3 Apixaban had significantly lower VTE recurrence rates (0.7% to 6.3%) and non-significant lower major bleeding (0% vs 1.4%, p=0.138) consistent with the newer and larger trial. Of note, this trial excluded patients with brain tumor and had few patients with upper GI or hematologic malignancy.  

In addition, a pilot study, the SELECT-D trial, compared rivaroxaban to dalteparin.4 Rivaroxaban had significantly lower VTE recurrence (4% vs 11%), without a significant increase in major bleeding (6% vs 4%), but had an increased number of clinically relevant non-major bleeds (13% vs 4%), particularly in cancers of the upper GI tract.

Although decision regarding use of DOACs in patients with malignancy should be made on case-by-case basis, they are increasingly considered for treatment of VTE in this patient population with the strongest evidence supporting apixaban or the initial use of LMWH for 5 days followed by edoxaban.  

Contributed by Sean Mendez MD, Mass General Hospital, Boston, MA.

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References:  

  1. Raskob GE, van Es N, Verhamme P, Carrier M, Di Nisio M, Garcia D, Grosso MA, Kakkar AK, Kovacs MJ, Mercuri MF, Meyer G, Segers A, Shi M, Wang TF, Yeo E, Zhang G, Zwicker JI, Weitz JI, Büller HR. Edoxaban for the Treatment of Cancer-Associated Venous Thromboembolism. N Engl J Med. 2018 Feb 15;378(7):615-624. doi: 10.1056/NEJMoa1711948. Epub 2017 Dec 12. PubMed PMID: 29231094.
  2. McBane Ii R, Loprinzi CL, Ashrani A, Perez-Botero J, Leon Ferre RA, Henkin S, Lenz CJ, Le-Rademacher JG, Wysokinski WE. Apixaban and dalteparin in active malignancy associated venous thromboembolism. The ADAM VTE Trial. Thromb Haemost. 2017 Oct 5;117(10):1952-1961. doi: 10.1160/TH17-03-0193. Epub 2017 Aug 24. PubMed PMID: 28837207.
  3. Agnelli G, Becattini C, Meyer G, Muñoz A, Huisman MV, Connors JM, Cohen A, Bauersachs R, Brenner B, Torbicki A, Sueiro MR, Lambert C, Gussoni G, Campanini M, Fontanella A, Vescovo G, Verso M. Apixaban for the Treatment of Venous Thromboembolism Associated with Cancer. N Engl J Med. 2020 Mar 29;. doi: 10.1056/NEJMoa1915103. [Epub ahead of print] PubMed PMID: 32223112.
  4. Young AM, Marshall A, Thirlwall J, Chapman O, Lokare A, Hill C, Hale D, Dunn JA, Lyman GH, Hutchinson C, MacCallum P, Kakkar A, Hobbs FDR, Petrou S, Dale J, Poole CJ, Maraveyas A, Levine M. Comparison of an Oral Factor Xa Inhibitor With Low Molecular Weight Heparin in Patients With Cancer With Venous Thromboembolism: Results of a Randomized Trial (SELECT-D). J Clin Oncol. 2018 Jul 10;36(20):2017-2023. doi: 10.1200/JCO.2018.78.8034. Epub 2018 May 10. PubMed PMID: 29746227.

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

Should I consider a direct oral anticoagulant (DOAC) for my patient with pancreatic cancer and pulmonary embolism?