Do proton pump inhibitors (PPIs) reduce the risk of bleeding from lower gastrointestinal tract?

The short answer is “No”!  Although proton pump inhibitors (PPIs) are effective in reducing the risk of upper gastrointestinal bleed (GIB) in high-risk patients, they do not protect against lower GIB. 1 In fact, their use has been associated with an increased risk of small bowel injury related to non-steroidal anti-inflammatory drugs (NSAIDs) and low-dose aspirin.2,3

A 2015 case-control study involving over 1,000 patients hospitalized for GIB found that although concomitant use of PPI in patients on NSAIDs, low-dose aspirin, other antiplatelet agents or anticoagulants was associated with a reduced risk of UGIB, it was not associated with reduced risk of lower GIB.  Interestingly, in this study, PPIs were associated with higher risk of lower GIB which might have been related to confounding factors and not necessarily a direct causal effect.4 Lack of an impact of PPIs on lower GIB among patients on aspirin or NSAIDS has also been supported by others. 5-7

The fact that PPIs don’t seem to reduce the risk of GIB distal to the duodenum should not be surprising given their primary mechanism of action through inhibition of acid production by gastric parietal cells. 8  What is perhaps more intriguing is how they may potentially increase the risk of small intestinal injury while still protecting the gastro-duodenum from NSAID-induced mucosal damage.

In a cool laboratory study involving rats, treatment with a PPI was associated with exacerbation of NSAID-induced intestinal ulceration and bleeding; by itself treatment with PPI was not associated with intestinal mucosa injury.9 Interestingly, in this study, a marked shifts in numbers and types of enteric bacteria with a significant reduction in jejunal Bifidobacteria spp was noted with PPI therapy. Restoration of small intestine Bifididobacteria during treatment with a PPI along with an NSAID prevented intestinal ulceration/bleeding. The investigators concluded that when used along with an NSAID, PPIs may cause small intestinal injury through alteration in the microbiome of the gut.  Fascinating!

Bonus Pearl: Did you know that the 2022 American Gastroenterological Association (AGA) clinical practice update on de-prescribing of PPIs lists several conditions for which acute/short term use of PPIs are NOT indicated, such as isolated lower GI symptomatology, acute nausea and vomiting not believed to be related to GERD/esophagitis, acute undifferentiated abdominal pain, and empiric treatment of laryngopharyngeal symptomatology? 10 

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

 

References

  1. Lue A, Lanas A. Proton pump inhibitor treatment and lower gastrointestinal bleeding: Balancing risks and benefits. World J Gastroenterol 2016;22:10477-10481. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5192259/#:~:text=PPIs%20do%20not%20prevent%20NSAID,and%20the%20risk%20of%20LGB.
  2. Endo H, Sakai E, Taniguchi L, et al. Risk factors for small-bowel mucosal breaks in chronic low-dose aspirin users: data from a prospective multicenter capsule endoscopy registry. Gastrointes Endosc 2014;80:826-34. https://pubmed.ncbi.nlm.nih.gov/24830581/
  3. Washio E, Esaki M, Maehata Y, et al. Proton pump inhibitors increase incidence of nonsteroidal anti-inflammatory drug-induced small bowel injury: A randomized, placebo-controlled trial. Clin Gastroenterol Hepatol 2016;14:809-815. https://pubmed.ncbi.nlm.nih.gov/26538205/
  4. Lanas A, Carrera-Lasfuentes P, Arguedas Y, et al. Risk of upper and lower gastrointestinal bleeding in patients taking nonsteroidal anti-inflammatory drugs, antiplatelet agents, or anticoagulants. Clin Gastroenterol Hepatol 2015;13:906-12. https://pubmed.ncbi.nlm.nih.gov/25460554/
  5. Nagata N, Niikura R, Aoki T, et al. Effect of proton-pump inhibitors on the risk of lower gastrointestinal bleeding associated with NSAIDs, aspirin, clopidogrel, and warfarin. J Gastroenterol 2015;50:1079-1086. https://pubmed.ncbi.nlm.nih.gov/25700638/
  6. Garcia Rodriguez LA, Lanas A, Soriano-Gabarro M, et al. Effect of proton pump inhibitors on risks of upper and lower gastrointestinal bleeding among users of low-dose aspirin: A population-based observational study. J Clin Med 2020;9:928. https://www.mdpi.com/2077-0383/9/4/928
  7. Casado Arroyo R, Polo-Tomas M, Roncales MP, et al. Lower GI bleeding is more common than upper among patients on dual antiplatelet therapy: long-term follow-up of a cohort of a patients commonly using PPI co-therapy. Heart 2012;98:718-723. https://pubmed.ncbi.nlm.nih.gov/22523056/
  8. Engevik AC, Kaji I, Goldenring JR. The physiology of the gastric parietal cell. Physiol Rev 2020;100:573-602. The Physiology of the Gastric Parietal Cell – PMC (nih.gov)
  9. Wallace JL, Syer S, Denou E, et al. Proton pump inhibitors exacerbate NSAID-induced small intestinal injury by inducing dysbiosis. Gastroenterology 2011;141:1314-22. https://www.gastrojournal.org/action/showPdf?pii=S0016-5085%2811%2900926-7
  10. Targownik LE, Fisher DA, Saini SD. AGA clinical practice update on de-prescribing of proton pump inhibitors: expert review. Gastroenterology 2022;162:1334-1342. https://www.gastrojournal.org/article/S0016-5085(21)04083-X/fulltext

Disclosures/Disclaimers: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Mercy Hospital-St. Louis, Massachusetts General Hospital, Harvard Catalyst, Harvard University, their affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

Do proton pump inhibitors (PPIs) reduce the risk of bleeding from lower gastrointestinal tract?

Why are antibiotics routinely administered in patients with cirrhosis and upper gastrointestinal (GI) bleed?

Antibiotic prophylaxis in patients with cirrhosis and upper gastrointestinal bleed (UGIB) reduce bacterial infections, all-cause mortality, bacterial infection, mortality, rebleeding events and hospitalization.1

A 2011 Cochrane meta-analysis involving 12 trials comparing antibiotic prophylaxis to no prophylaxis or placebo found reduction in bacterial infection (RR 0.35, 95% C.I., 0.26-0.47) and overall mortality (RR 0.79, 95% C.I. 0.63-0.98). It also found a significant reduction in rebleeding and days of hospitalization, based on more limited data. Trials in this meta-analysis involved a variety of antibiotics, including norfloxacin, ciprofloxacin, cefazolin, cefotaxime, ceftriaxone and ampicillin-sulbactam. 1

So why is ceftriaxone the often-favored bacterial prophylaxis in UGIB? First, infections in cirrhotic patients often originate from bacterial translocation through the GI tract with aerobic gram-negative GI flora expected to be susceptible to ceftriaxone.2 Second, the emerging quinolone resistance among aerobic Gram-negative bacteria 2 and frequent use of ciprofloxacin for prophylaxis against spontaneous bacterial peritonitis have made use of ceftriaxone in this setting more desirable than quinolones.

Of note, a 2006 study involving patients with advanced cirrhosis (Child Pugh B or C) and GI hemorrhage receiving either norfloxacin or ceftriaxone for 7 days found a significantly lower risk of suspected or proven infections (11% vs 33%) and bacteremia or spontaneous bacterial peritonitis (2% vs 12%) in the ceftriaxone group; there was no difference in hospital mortality. 3 Although the overall prevalence of quinolone-resistant gram-negatives was unknown, 6 of 7 gram-negative bacilli isolated in the norfloxacin group were quinolone resistant.

Bonus Pearl: Did you know that 30-40% of cirrhotic patients presenting with UGIB will develop a bacterial infection within a week of their admission? 1

Liked this post? Download the app on your smart phone and sign up below to catch future pearls right into your inbox, all for free!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

References

  1. Chavez-Tapia NC, Barrientos-Gutierrez T, Tellez-Avila F, et al. Meta-analysis: antibiotic prophylaxis for cirrhotic patients with upper gastrointestinal bleeding-an updated Cochrane review. Aliment Pharmacol Ther 2011;34:509-518. https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1365-2036.2011.04746.x
  2. Mallet M, Rudler M, Thabut D. Variceal bleeding in cirrhotic patients. Gastroenterology Reports 2017;5:185-192. https://academic.oup.com/gastro/article/5/3/185/4002779
  3. Fernandez J, del Arbo LR, Gomez C, et al. Norfloxacin vs ceftriaxone in the prophylaxis of infections in patients with advanced cirrhosis and hemorrhage. Gastroenterology 2006;131:1049-1056. https://www.sciencedirect.com/science/article/abs/pii/S0016508506015356

 

Disclosures: The listed questions and answers are solely the responsibility of the author and do not necessarily represent the official views of Massachusetts General Hospital, Harvard Catalyst, Harvard University, its affiliate academic healthcare centers, or its contributors. Although every effort has been made to provide accurate information, the author is far from being perfect. The reader is urged to verify the content of the material with other sources as deemed appropriate and exercise clinical judgment in the interpretation and application of the information provided herein. No responsibility for an adverse outcome or guarantees for a favorable clinical result is assumed by the author. Thank you!

Why are antibiotics routinely administered in patients with cirrhosis and upper gastrointestinal (GI) bleed?

My patient with cirrhosis now has an upper gastrointestinal bleed (UGIB) with hepatic encephalopathy (HE). What’s the connection between UGIB and HE?

Hepatic encephalopathy (HE) may be precipitated by a variety of factors including infection, hypovolemia, electrolyte imbalance (eg, hyponatremia, hypokalemia), metabolic alkalosis, sedatives, and of course UGIB. 1-3

Ammonia is often considered to play a central role in the the pathogenesis of HE, particularly when associated with UGIB. The ammoniagenic potential of UGIB is primarily attributed to the presence of hemoglobin protein in the intestinal tract. One-half of the ammoniagenesis originates from amino acid metabolism (mainly glutamine) in the mucosa of the small bowel, while the other half is due to the splitting of urea by the resident bacteria in the colon (eg, Proteus spp., Enterobacteriaceae, and anerobes).1,2

A large protein load in the GI tract, as occurs in UGIB, may result in hyperammonemia in patients with cirrhosis due to the limited capacity of the liver to convert ammonia to urea through the urea cycle as well as by the shunting of blood around hepatic sinusoids. Recent studies, however, also implicate the kidneys as an important source of ammonia in this setting, further compounding HE.3

It’s important to stress that ammonia is not likely to be the only mediator of HE. Enhanced production of cytokines due to infection or other inflammatory states, neurosteroids, endogenous benzodiazepines, and other bacterial byproducts may also play an important role in precipitating HE.2,4-6  So stay tuned!

Bonus pearl: Did you know that proinflammatory cytokines tumor necrosis factor-alpha and inerleukin-6 increase ammonia permeability across central nervous system-derived endothelial cells? 7

 

References

  1. Olde Damink SWM, Jalan R, Deutz NEP, et al. The kidney plays a major role in the hyperammonemia seen after simulated or actual GI bleeding in patients with cirrhosis. Hepatology 2003;37:1277-85.
  2. Frederick RT. Current concepts in the pathophysiology and management of hepatic encephalopathy. Gastroenterol Hepatol 2011;7:222-233.
  3. Tapper EB, Jiang ZG, Patwardhan VR. Refining the ammonia hypothesis: a physiology-driven approach to the treatment of hepatic encephalopathy. Mayo Clin Proc 2015;90:646-58.
  4. Shawcross DL, Davies NA, Williams R, et al. Systemic inflammatory response exacerbates the neuropsychological effects of induced hyperammonemia in cirrhosis. J Hepatol 2004;40:247-254.
  5. Shawcross DL, Sharifi Y, Canavan JB, et al. Infection and systemic inflammation, not ammonia, are associated with grade ¾ hepatic encephalopathy, but not mortality in controls. J Hepatol 2011;54:640-49.
  6. Shawcross D, Jalan R. The pathophysiologic basis of hepatic encephalopathy: central role for ammonia and inflammation.Cell Mol Life Sci 2005;62:2295-2304.
  7. Duchini A, Govindarajan S, Santucci M, et al. Effects of tumor necrosis factor-alpha and interleukin-6 on fluid-phase permeability and ammonia diffusion in CNS-derived endothelial cells. J Investig Med 1996;44:474-82.

If you liked this pearl, sign up under menu and receive future pearls straight into your mailbox!

My patient with cirrhosis now has an upper gastrointestinal bleed (UGIB) with hepatic encephalopathy (HE). What’s the connection between UGIB and HE?